Skip to main content

Advertisement

Log in

Enhanced energy storage performance of Sr0.7Bi0.2TiO3@ NaNb0.9Ta0.1O3 relaxor ferroelectrics via a synergistic optimization strategy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sr0.7Bi0.2TiO3-based ceramics with excellent dielectric temperature stability and energy storage efficiency (η) are expected to be applied in dielectric ceramic capacitors. Unfortunately, low breakdown strength (BDS) limits its application. In this work, the new Sr0.7Bi0.2TiO3@xNaNb0.9Ta0.1O3 (x = 5–20 mol%, SBT@xNNT) relaxor ferroelectric ceramics with fine grains were prepared by a two-step sintering process. The introduction of NNT causes the coexistence of multiphase in ceramics, which enhances the relaxation behavior and the temperature stability of energy storage. Meanwhile, the design of core–shell structure also improves the temperature stability of the ceramics. Thus, the energy density (Wrec) of 2.2 J/cm3 and η of 76% are achieved in Sr0.7Bi0.2TiO3@xNaNb0.9Ta0.1O3 ceramics at 249 kV/cm, and Wrec exhibits good temperature stability from 20 to 150 °C. The Sr0.7Bi0.2TiO3@xNaNb0.9Ta0.1O3 ceramics have excellent dielectric temperature stability (|Δε/ε20 °C|≤ 15%) at  − 60–120 °C. The as-prepared SBT@10NNT ceramics are suitable for the application in dielectric ceramic capacitors. This study provides SBT-based ceramics for a novel strategy for optimizing the energy storage performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. W. Dong, H.Y. Xiao, Y.M. Jia, L. Chen, H.F. Geng, S.U. Hasnain Bakhtiar, Q.Y. Fu, Y.P. Guo, Engineering the defects and microstructures in ferroelectrics for enhanced/novel properties: an emerging way to cope with energy crisis and environmental pollution. Adv. Sci. (2022). https://doi.org/10.1002/advs.202105368

    Article  Google Scholar 

  2. V. Veerapandiyan, F. Benes, T. Gindel, M. Deluca, Strategies to improve the energy storage properties of perovskite lead-free relaxor ferroelectrics: a review. Materials 13(24), 5742 (2020)

    Article  CAS  Google Scholar 

  3. D.X. Li, X.J. Zeng, Z.P. Li, Z.Y. Shen, W.Q. Luo, F.S. Song, Z.M. Wang, Y.M. Li, H. Hao, X.C. Wang, Progress and perspectives in dielectric energy storage ceramics. J. Adv. Ceram. 10(4), 675–703 (2021)

    Article  CAS  Google Scholar 

  4. X.T. Zhang, L.L. Zhao, L.W. Liu, Z.A. Zhang, B. Cui, Interface and defect modulation via a core–shell design in (Na0.5Bi0.5TiO3@La2O3) -(SrSn0.2Ti0.8O3@La2O3)-Bi2O3-B2O3-SiO2 composite ceramics for wide-temperature energy storage capacitors. Chem. Eng. J. 435, 135061 (2022)

    Article  CAS  Google Scholar 

  5. Z.T. Yang, H.L. Du, L. Jin, D. Poelman, High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges. J. Mater. Chem. A. 9(34), 18026–18085 (2021)

    Article  CAS  Google Scholar 

  6. G. Wang, Z.L. Lu, Y. Li, L.H. Li, H.F. Ji, A. Feteira, D. Zhou, D.W. Wang, S.J. Zhang, I.M. Reaney, Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 121(10), 6124–6172 (2021)

    Article  CAS  Google Scholar 

  7. Q.B. Yuan, M. Chen, S.L. Zhan, Y.X. Li, Y. Lin, H.B. Yang, Ceramic-based dielectrics for electrostatic energy storage applications: Fundamental aspects, recent progress, and remaining challenges. Chem. Eng. J. 446, 136315 (2022)

    Article  CAS  Google Scholar 

  8. K.L. Zou, Y. Dan, H.J. Xu, Q.F. Zhang, Y.M. Lu, H.T. Huang, Y.B. He, Recent advances in lead-free dielectric materials for energy storage. Mater. Res. Bull. 113, 190–201 (2019)

    Article  CAS  Google Scholar 

  9. H.B. Zhang, T. Wei, Q. Zhang, W.G. Ma, P.Y. Fan, D. Salamon, S.T. Zhang, B. Nan, H. Tan, Z.G. Ye, A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C (2020). https://doi.org/10.1039/D0TC04381H

    Article  Google Scholar 

  10. X.P. Zhu, P. Shi, R.R. Kang, S.Y. Li, Z.P. Wang, W.J. Qiao, X.X. Zhang, L.Q. He, Q.D. Liu, X.J. Lou, Enhanced energy storage density of Sr0.7BixTiO3 lead-free relaxor ceramics via A-site defect and grain size tuning. Chem. Eng. J. 420, 129808 (2021)

    Article  CAS  Google Scholar 

  11. C. Ang, Z. Yu, Dielectric relaxor and ferroelectric relaxor: Bi-doped paraelectric SrTiO3. J. Appl. Phys. 91(3), 1487–1494 (2002)

    Article  Google Scholar 

  12. P. Zhao, B. Tang, F. Si, C.T. Yang, H. Li, S.R. Zhang, Novel Ca doped Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectrics with high energy density and efficiency. J. Eur. Ceram. Soc. (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.006

    Article  Google Scholar 

  13. M. Sakurai, K. Kanehara, H. Takeda, T. Tsurumi, T. Hoshina, Wideband dielectric spectroscopy of (Sr0.7Bi0.2)TiO3 ceramics and its microscopic mechanism of polarization. J. Ceram. Soc. Jpn. (2016). https://doi.org/10.2109/jcersj2.16023

    Article  Google Scholar 

  14. G.F. Zhang, M.H. Cao, H. Hao, H.X. Liu, Energy storage characteristics in Sr(1-1.5x)BixTiO3 ceramics. Ferroelectrics. 447(1), 86–94 (2013)

    Article  CAS  Google Scholar 

  15. K. Yao, C.R. Zhou, J. Wang, Q.N. Li, C.L. Yuan, J.W. Xu, G.H. Chen, G.H. Rao, A new strategy to realize high energy storage properties and ultrafast discharge speed in Sr0.7Bi0.2TiO3-based relaxor ferroelectric ceramic. J. Alloys Compd. 883, 160855 (2021)

    Article  CAS  Google Scholar 

  16. P. Zhao, B. Tang, Z.X. Fang, F. Si, C.T. Yang, G. Liu, S.R. Zhang, Structure, dielectric and relaxor properties of Sr0.7Bi0.2TiO3-K0.5Bi0.5TiO3 lead-free ceramics for energy storage applications. J. Materiomics. 7(1), 195–207 (2021)

    Article  Google Scholar 

  17. P. Zhao, Z.X. Fang, X.C. Zhang, J.J. Chen, Y.D. Shen, X. Zhang, Q. An, C.T. Yang, X.S. Gao, S.R. Zhang, B. Tang, Aliovalent doping engineering for A-and B-sites with multiple regulatory mechanisms: a strategy to improve energy storage properties of Sr0.7Bi0.2TiO3-based lead-free relaxor ferroelectric ceramics. ACS Appl. Mater. Interfaces. 13(21), 24833–24855 (2021)

    Article  CAS  Google Scholar 

  18. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J.C. Carru, A. Zegzouti, M. Daoud, Co-precipitation synthesis and characterization of SrBi2Ta2O9 ceramic. J. Electron. Mater. 47(7), 3398–3402 (2018)

    Article  CAS  Google Scholar 

  19. X.F. Chen, X.L. Chao, Z.P. Yang, Submicron barium calcium zirconium titanate ceramic for energy storage synthesised via the co-precipitation method. Mater. Res. Bull. 111, 259–266 (2019)

    Article  CAS  Google Scholar 

  20. Q. Zhang, B. Chen, D. Wu, Z.H. Peng, X.S. Qiao, X.L. Chao, Z.P. Yang, Controllable synthesis of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 submicron sphere by hydroxide co-precipitation method. Ceram. Int. 46(18), 28285–28291 (2020)

    Article  CAS  Google Scholar 

  21. R. Ma, Y. Wang, B. Cui, Y.J. Wang, Y.Y. Wang, Fabrication of submicron BaTiO3@YFeO3 particles and fine-grained composite magnetodielectric ceramics with a core–shell structure by means of a co-precipitation method. J. Mater. Sci. Mater. Electron. 28, 10986–10991 (2017)

    Article  CAS  Google Scholar 

  22. N.J. Lóh, L. Simão, C.A. Faller, A. De Noni, O.R.K. Montedo, A review of two-step sintering for ceramics. Ceram. Int. 42(11), 12556–12572 (2016)

    Article  Google Scholar 

  23. M. Zhou, Z.Y. Huang, J.Q. Qi, N. Wei, D. Wu, Q.H. Zhang, S.S. Wang, Z. Feng, T.C. Lu, Densification and grain growth of Gd2Zr2O7 nanoceramics during pressureless sintering. J. Eur. Ceram. Soc. 37(3), 1059–1065 (2017)

    Article  CAS  Google Scholar 

  24. S.L. Yang, C.Y. Zuo, F. Du, L. Chen, W.J. Jie, X.H.I. Wei, Submicron Sr0.7Bi0.2TiO3 dielectric ceramics for energy storage via a two-step method aided by cold sintering process. Mater. Des. 225, 111447 (2022)

    Article  Google Scholar 

  25. C. Luo, C.H. Zhu, Y.H. Liang, P. Zheng, W.F. Bai, L.L. Li, F. Wen, J.J. Zhang, L. Zheng, Y. Zhang, Promoting energy storage performance Sr0.7Ba0.3Nb2O6 tetragonal tungsten bronze ceramic by a two-step sintering technique. ACS Appl. Electron. Mater. 4(1), 452–460 (2021)

    Article  Google Scholar 

  26. D.E. Hu, H. Ma, Y. Tanaka, L.F. Zhao, Q. Feng, Ferroelectric mesocrystalline BaTiO3/SrTiO3 nanocomposites with enhanced dielectric and piezoelectric responses. Chem. Mater. 27(14), 4983–4994 (2015)

    Article  CAS  Google Scholar 

  27. A. Jain, Y.G. Wang, H. Guo, Microstructural properties and ultrahigh energy storage density in Ba0.9Ca0.1TiO3-NaNb0.85Ta0.15O3 relaxor ceramics. Ceram. Int. 46(15), 24333–24346 (2020)

    Article  CAS  Google Scholar 

  28. Q.P. Dong, X. Wang, J.M. Wang, Y. Pan, X.Y. Dong, H.Y. Chen, X.L. Chen, H.F. Zhou, 2020 Enhanced energy storage performance in Na(1-3x)BixNb0.85Ta0.15O3 relaxor ferroelectric ceramics. Ceram. Int. 48(1), 776–783 (2022)

    Article  CAS  Google Scholar 

  29. S.Y. Li, P. Shi, X.P. Zhu, B. Yang, X.X. Zhang, R.R. Kang, Q.D. Liu, Y.F. Gao, H.N. Sun, X.J. Lou, Enhanced energy storage properties in lead-free NaNbO3-Sr0.7Bi0.2TiO3-BaSnO3 ternary ceramic. J. Mater. Sci. 56(20), 11922–11931 (2021)

    Article  CAS  Google Scholar 

  30. C.Y. Luo, Y.Z. Wei, Q. Feng, M. Wang, N.N. Luo, C.L. Yuan, C.R. Zhou, T. Fujita, J.W. Xu, Significantly enhanced energy-storage properties of Bi0.47Na0.47Ba0.06TiO3-CaHfO3 ceramics by introducing Sr0.7Bi0.2TiO3 for pulse capacitor application. Chem. Eng. J. 429, 132165 (2022)

    Article  CAS  Google Scholar 

  31. G. Liu, M.Y. Tang, X. Hou, B. Guo, J.W. Lv, J. Dong, Y. Wang, Q. Li, K. Yu, Y. Yan, L. Jin, Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process. Chem. Eng. J. 412, 127555 (2021)

    Article  CAS  Google Scholar 

  32. C. Shi, F. Yan, G.L. Ge, Y.Q. Wei, J.W. Zhai, W. Yao, Significantly enhanced energy storage performances and power density in (1–x)BCZT-xSBT lead-free ceramics via synergistic optimization strategy. Chem. Eng. J. 426, 130800 (2021)

    Article  CAS  Google Scholar 

  33. Y.F. Gao, X.P. Zhu, B. Yang, P. Shi, R.R. Kang, Y. Yuan, Q.D. Liu, M. Wu, J.H. Gao, X.J. Lou, Grain size modulated (Na0.5Bi0.5)0.65Sr0.35TiO3-based ceramics with enhanced energy storage properties. Chem. Eng. J. 433, 133584 (2022)

    Article  CAS  Google Scholar 

  34. X.S. Qiao, D. Wu, F.D. Zhang, B. Chen, X.D. Ren, P.F. Liang, H.L. Du, X.L. Chao, Z.P. Yang, Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramic with large energy density and high efficiency under a moderate electric field. J. Mater. Chem. C 7(34), 10514–10520 (2019)

    Article  CAS  Google Scholar 

  35. M. Emmanuel, H. Hao, H.X. Liu, A. Jan, F. Alresheedi, Significantly enhanced energy storage density of NNT ceramics using aliovalent Dy3+ dopant. ACS Sustain. Chem. Eng. 9(17), 5849–5859 (2021)

    Article  CAS  Google Scholar 

  36. Z.H. Jiang, H.C. Yang, L. Cao, Z.Y. Yang, Y. Yuan, E.Z. Li, Enhanced breakdown strength and energy storage density of lead-free Bi0.5Na0.5TiO3-based ceramic by reducing the oxygen vacancy concentration. Chem. Eng. J. 414, 128921 (2021)

    Article  CAS  Google Scholar 

  37. Z.H. Dai, D.Y. Li, Z.J. Zhou, S. Zhou, W.G. Liu, J.J. Liu, X. Wang, X.B. Ren, A strategy for high performance of energy storage and transparency in KNN-based ferroelectric ceramics. Chem. Eng. J. 427, 131959 (2022)

    Article  CAS  Google Scholar 

  38. K. Kobayashi, M. Ryu, Y. Doshida, Y. Mizuno, C.A. Randall, Novel High-temperature antiferroelectric-based dielectric NaNbO3–NaTaO3 solid solutions processed in low oxygen partial pressures. J. Am. Ceram. Soc. 96(2), 531–537 (2013)

    Article  CAS  Google Scholar 

  39. J.J. Bian, M. Otonicar, M. Spreitzer, D. Vengust, D. Suvorov, Structural evolution, dielectric and energy storage properties of Na(Nb1−xTax)O3 ceramics prepared by spark plasma sintering. J. Eur. Ceram. Soc. 39(7), 2339–2347 (2019)

    Article  CAS  Google Scholar 

  40. P. Zhao, B. Tang, Z.X. Fang, F. Si, C.T. Yang, S.R. Zhang, Improved dielectric breakdown strength and energy storage properties in Er2O3 modified Sr0.35Bi0.35K0.25TiO3. Chem. Eng. J. 403, 126290 (2021)

    Article  CAS  Google Scholar 

  41. J.B. Wang, H.Q. Fan, M.Q. Wang, P.Y. Fan, Significantly enhanced energy storage performance in Sm-doped 0.88NaNbO3-0.12Sr0.7Bi0.2TiO3 lead-free ceramics. Ceram. Int. 47(13), 17964–17970 (2021)

    Article  CAS  Google Scholar 

  42. J.J. Chen, F. Si, P. Zhao, S.R. Zhang, B. Tang, Novel lead-free (1-x)Sr0.7Bi0.2TiO3-xLa(Mg0.5Zr0.5)O3 energy storage ceramics with high charge-discharge and excellent temperature-stable dielectric properties. Ceram. Int. 47(18), 26215–26223 (2021)

    Article  CAS  Google Scholar 

  43. H. Wang, H. Yuan, X.Y. Li, F.F. Zeng, K.Y. Wu, Q.J. Zheng, G.F. Fan, D.M. Lin, Enhanced energy density and discharged efficiency of lead-free relaxor (1-x)[(Bi0.5Na0.5)0.94Ba0.06]0.98La0.02TiO3-xKNb0.6Ta0.4O3 ceramic capacitors. Chem. Eng. J. 394, 124879 (2020)

    Article  CAS  Google Scholar 

  44. C. Luo, X.T. Zheng, P. Zheng, J. Du, Z. Niu, K. Zhang, W.F. Bai, Q.L. Fan, L. Zheng, Y. Zhang, Realizing excellent energy storage performances in tetragonal tungsten bronze ceramics via a B-site engineering strategy. J. Alloys Compd. 933, 167809 (2022)

    Article  Google Scholar 

  45. C.H. Zhu, W.B. Ye, P. Zheng, H.F. Zhang, F. Lu, Q.L. Fan, J.J. Zhang, L. Zheng, Y. Zhang, W.F. Bai, Fantastic energy storage performances and excellent stability in BiFeO3–SrTiO3-based relaxor ferroelectric ceramics. ACS Appl. Energy Mater. 5(7), 8492–8500 (2022)

    Article  CAS  Google Scholar 

  46. Z.P. Wang, R.R. Kang, Z.K. Hong, X.Q. Ke, X.J. Lou, L.X. Zhang, L. Zhang, J.J. Wang, Achieving ultrahigh energy-storage density with excellent thermal stability in Sr0.7Bi0.2TiO3-based relaxors via polarization behavior modulation. ACS Appl. Mater. Interfaces. 14(39), 44389–44397 (2022)

    Article  CAS  Google Scholar 

  47. A. Torres-Pardo, R. Jiménez, E. García-González, Phase coexistence in NaNb(1–x)TaxO3 materials with enhanced dielectric properties. J. Mater. Chem. 22(30), 14938–14943 (2012)

    Article  CAS  Google Scholar 

  48. X.T. Zhang, L.W. Liu, L.L. Zhao, Y. Wang, B. Cui, Controllable preparation of Na0.4K0.1Bi0.5TiO3-CaZrO3-NaNbO3 nanoceramics with excellent temperature-stable energy storage performance by combining sol-gel synthesis and two-step sintering. Ceram. Int. 48(21), 31138–31147 (2022)

    Article  CAS  Google Scholar 

  49. G.L. Xue, X.F. Zhou, Z.N. Yan, G. Liu, H. Luo, D. Zhang, Temperature-stable Na0.5Bi0.5TiO3-based relaxor ceramics with high permittivity and large energy density under low electric fields. J. Alloys Compd. 882, 160755 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21071115), the Shaanxi Province Natural Science Foundation Research Project (Grant No. 2020JZ-44 and 2021JZ-44), the Key Science and Technology Innovation Team of Shaanxi Province (2019TD-007), and the Doctoral Scientific Start-up Foundation of Yan’an University (YAU202213118).

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21071115), the Shaanxi Province Natural Science Foundation Research Project (Grant No. 2020JZ-44 and 2021JZ-44), the Key Science and Technology Innovation Team of Shaanxi Province (2019TD-007), and the Doctoral Scientific Start-up Foundation of Yan’an University (YAU202213118).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by LL. And all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lili Zhao or Bin Cui.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, X., Wang, Y. et al. Enhanced energy storage performance of Sr0.7Bi0.2TiO3@ NaNb0.9Ta0.1O3 relaxor ferroelectrics via a synergistic optimization strategy. J Mater Sci: Mater Electron 34, 856 (2023). https://doi.org/10.1007/s10854-023-10252-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10252-w

Navigation