Skip to main content
Log in

g-C3N4/TiO2 uniformly distributed microspheres: preparation for enhanced photocatalytic performance by co-calcination

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To solve the drawbacks that TiO2 photocatalyst only responds to ultraviolet (UV) light, some surface modification strategies have been proposed. However, most of them were impeded by the tedious preparation method and limited performance enhancement. Herein, a uniformly distributed structure of g-C3N4 nanosheets on the surface of spherical TiO2 particles prepared by co-calcination of urea and TiO2 precursors was verified to effectively solve those problems. The realization of this synthesis process contributed to the high dispersion and reasonable particle size distribution of the composites, which effectively restrained the agglomeration between them. The homogenous heterojunction structure formed after the surface decoration of C3N4 increased the specific surface area of TiO2 from 9.25 to 18.05 m2/g, which could bring sufficient active sites in the photocatalytic reaction process. UV–Vis diffuse reflectance spectra (DRS), photoluminescence spectra (PL) and photochemical tests showed that g-C3N4/TiO2 has strong visible light absorption and photo-generated carriers transfer ability. The photocatalytic degradation rate of g-C3N4/TiO2 reached 98.5% for RhB dye solution within 15 min under the irradiation of sunlight, which is even better than that of P25 TiO2 under the UV light irradiation. This work provided a simple and efficient method for the construction of TiO2 based heterojunction by designing the morphology of the TiO2 precursors and the co-calcination of urea in a proper way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Some or all data during the study are available from the corresponding author.

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  2. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13(3), 169–189 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  CAS  Google Scholar 

  3. K. Nakata, T. Ochiai, T. Murakami, A. Fujishima, Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications. Electrochim. Acta 84, 103–111 (2012). https://doi.org/10.1016/j.electacta.2012.03.035

    Article  CAS  Google Scholar 

  4. Q. Guo, C.Y. Zhou, Z.B. Ma, X.M. Yang, Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater. 31(50), 1901997 (2019). https://doi.org/10.1002/adma.201901997

    Article  CAS  Google Scholar 

  5. A.A. Atmane, S. Bourouina-Bacha, Method for attachment of TiO2 using design of experiments: application to the photocatalysis of a model pollutant methylene blue dye. Water Sci. Technol. 82(10), 2076–2084 (2020). https://doi.org/10.2166/wst.2020.490

    Article  CAS  Google Scholar 

  6. A.A. Isari, A. Payan, M. Fattahi, S. Jorfi, B. Kakavandi, Photocatalytic degradation of rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene oxide (Fe-TiO2/rGO): characterization and feasibility, mechanism and pathway studies. Appl. Surf. Sci. 462, 549–564 (2018). https://doi.org/10.1016/j.apsusc.2018.08.133

    Article  CAS  Google Scholar 

  7. R.D. Chekuri, S.R. Tirukkovalluri, One step synthesis and characterization of copper doped sulfated titania and its enhanced photocatalytic activity in visible light by degradation of methyl orange. Chin. J. Chem. Eng. 24(4), 475–483 (2016). https://doi.org/10.1016/j.cjche.2015.11.026

    Article  CAS  Google Scholar 

  8. Y.T. Liu, R.H. Liu, C.B. Liu, Enhanced photocatalysis on TiO2 nanotube arrays modified with molecularly imprinted TiO2 thin film. J. Hazard Mater. 182(1–3), 912–918 (2010). https://doi.org/10.1016/j.jhazmat.2010.07.007

    Article  CAS  Google Scholar 

  9. Y. Ren, Y.Z. Dong, Y.Q. Feng, J.L. Xu, Compositing two-dimensional materials with TiO2 for photocatalysis. Catalysts 8(12), 590 (2018). https://doi.org/10.3390/catal8120590

    Article  CAS  Google Scholar 

  10. L. Pan, X.W. Zhang, L. Wang, J.J. Zou, Controlling surface and interface of TiO2 toward highly efficient photocatalysis. Mater. Lett. 160, 576–580 (2015). https://doi.org/10.1016/j.matlet

    Article  CAS  Google Scholar 

  11. A. Rodriguez-Mendez, C. Guzman, E.A. Elizalde-Penal, Effluent disinfection of real wastewater by Ag–TiO2 nanoparticles photocatalysis. J. Nanosci. Nanotechnol. 17(1), 711–719 (2017). https://doi.org/10.1166/jnn.2017.13066

    Article  CAS  Google Scholar 

  12. G. Sanzone, M. Zimbone, G. Cacciato et al., Ag/TiO2 nanocomposite for visible light-driven photocatalysis. Superlattices Microstruct. 123, 394–402 (2018). https://doi.org/10.1016/j.spmi

    Article  CAS  Google Scholar 

  13. A. Jbeli, Z. Hamden, S. Bouattour, Chitosan-Ag-TiO2 films: an effective photocatalyst under visible light. Carbohydr. Polym. 199, 31–40 (2018). https://doi.org/10.1016/j.carbpol.2018.06.122

    Article  CAS  Google Scholar 

  14. S.I. Mogal, D.O. Shah, T. Mukherjee, T. Shripathi, M.K. Mishra, Enhanced photocatalytic efficiency of a least active Ag-TiO2 by amine adsorption. ACS Omega 3(10), 12802–12812 (2018). https://doi.org/10.1021/acsomega.8b01890

    Article  CAS  Google Scholar 

  15. H. Mao, Z.X. Fei, C.Q. Bian, L.L. Yu, S.Y. Chen, Y.T. Qian, Facile synthesis of high-performance photocatalysts based on Ag/TiO2 composites. Ceram. Int. 45(9), 12586–12589 (2019). https://doi.org/10.1016/j.ceramint.2019.03.109

    Article  CAS  Google Scholar 

  16. L. Wang, Z.J. Wang, D.H. Wang, X.C. Shi, H. Song, X.Q. Gao, The photocatalysis and mechanism of new SrTiO3/TiO2. Solid State Sci. 31, 85–90 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.03.005

    Article  CAS  Google Scholar 

  17. R.R. Hao, G.H. Wang, H. Tang, L.L. Sun, C. Xu, D.Y. Han, Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B 187, 47–58 (2016). https://doi.org/10.1016/j.apcatb.2016.01.026

    Article  CAS  Google Scholar 

  18. P. Pannak, A. Songsasen, W. Foytong, P. Kidkhunthod, W. Sirisaksoontorn, Homogeneous distribution of nanosized ZnO in montmorillonite clay sheets for the photocatalytic enhancement in degradation of Rhodamine B. Res. Chem. Intermed. 44(11), 6861–6875 (2018). https://doi.org/10.1007/s11164-018-3526-6

    Article  CAS  Google Scholar 

  19. R. Shan, L.L. Lu, J. Gu, Y. Zhang, H. Yuan, Y. Chen, B. Luo, Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions. Mater. Sci. Semicond. Proc. 114, 105088 (2020). https://doi.org/10.1016/j.mssp.2020.105088

    Article  CAS  Google Scholar 

  20. J.F. Zhang, Z.Q. Zhang, W.H. Zhu, X.G. Meng, Boosted photocatalytic degradation of Rhodamine B pollutants with Z-scheme CdS/AgBr-rGO nanocomposite. Appl. Surf. Sci. 502, 144275 (2020). https://doi.org/10.1016/j.apsusc.2019.144275

    Article  CAS  Google Scholar 

  21. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18(41), 4893–4908 (2008). https://doi.org/10.1039/b800274f

    Article  CAS  Google Scholar 

  22. S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26(6), 3894–3901 (2010). https://doi.org/10.1021/la904023j

    Article  CAS  Google Scholar 

  23. W.N. Shi, W.X. Fang, J.C. Wang, X. Qiao, B.B. Wang, X.W. Guo, pH-controlled mechanism of photocatalytic RhB degradation over g-C3N4 under sunlight irradiation. Photochem. Photobiol. Sci. 20(2), 303–313 (2021). https://doi.org/10.1007/s43630-021-00019-9

    Article  CAS  Google Scholar 

  24. Y.J. Zhang, T. Mori, J.H. Ye, M. Antonietti, Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132(18), 6294–6295 (2010). https://doi.org/10.1021/ja101749y

    Article  CAS  Google Scholar 

  25. Y. Wen, D. Wang, H. Li, W. Jiang, T. Zhou, X. Den, G. Che, Enhanced photocatalytic hydrogen evolution of 2D/2D N-Sn3O4/g-C3N4 S-scheme heterojunction under visible light irradiation. Appl. Surf. Sci. 567, 150903 (2021). https://doi.org/10.1016/j.apsusc.2021.150903

    Article  CAS  Google Scholar 

  26. G.H. Dong, K. Zhao, L.Z. Zhang, Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem. Commun. 48(49), 6178–6180 (2012). https://doi.org/10.1039/c2cc32181e

    Article  CAS  Google Scholar 

  27. Y. Zheng, L.H. Lin, X.J. Ye, F.S. Guo, X.C. Wang, Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew. Chem. Int. Ed. 126(44), 12120–12124 (2014). https://doi.org/10.1002/anie.201407319

    Article  CAS  Google Scholar 

  28. K.K. Hu, E. Lei, C.Y. Hu, D. Zhao, M. Zhu, J. Wang, W. Zhao, g-C3N4/TiO2 composite microspheres: in situ growth and high visible light catalytic activity. CrystEngComm 22(42), 7104–7112 (2020). https://doi.org/10.1039/d0ce01154a

    Article  CAS  Google Scholar 

  29. N.R. Khalid, U. Mazia, M.B. Tahir, N.A. Niaz, M.A. Javid, Photocatalytic degradation of RhB from an aqueous solution using Ag3PO4/N-TiO2 heterostructure. J. Mol. Liq. 313, 113522 (2020). https://doi.org/10.1016/j.molliq.2020.113522

    Article  CAS  Google Scholar 

  30. F. Dong, Z.W. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, W.K. Ho, In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 5(21), 11392–11401 (2013). https://doi.org/10.1021/am403653a

    Article  CAS  Google Scholar 

  31. W. Ren, J.J. Cheng, H.H. Ou, C.J. Huang, M. Anpo, X.C. Wang, Optimizing the crystallization process of conjugated polymer photocatalysts to promote electron transfer and molecular oxygen activation. J. Catal. 389, 636–645 (2020). https://doi.org/10.1016/j.jcat.2020.07.005

    Article  CAS  Google Scholar 

  32. J. Li, B.W. Li, Q.Y. Li, J.J. Yang, The effect of N-doped form on visible light photoactivity of Z-scheme g-C3N4/TiO2 photocatalyst. Appl. Surf. Sci. 466, 268–273 (2019). https://doi.org/10.1016/j.apsusc.2018.10.035

    Article  CAS  Google Scholar 

  33. P. Jimenez-Calvo, V. Caps, M.N. Ghazzal, C. Colbeau-Justin, V. Keller, Au/TiO2 (P25)-gC3N4 composites with low g-C3N4 content enhance TiO2 sensitization for remarkable H2 production from water under visible-light irradiation. Nano Energy 75, 104888 (2020). https://doi.org/10.1016/j.nanoen.2020.104888

    Article  CAS  Google Scholar 

  34. W.Q. Wu, H.L. Feng, H.Y. Chen, D.B. Kuang, C.Y. Su, Recent advances in hierarchical three-dimensional titanium dioxide nanotree arrays for high-performance solar cells. J. Mater. Chem. A 5(25), 12699–12717 (2017). https://doi.org/10.1039/c7ta03521g

    Article  CAS  Google Scholar 

  35. Y. Zhang, J. Xu, J. Mei, S. Sarina, Z. Wu, T. Liao, Z. Sun, Strongly interfacial-coupled 2D–2D TiO2/g-C3N4 heterostructure for enhanced visible-light induced synthesis and conversion. J. Hazard. Mater. 394, 122529 (2020). https://doi.org/10.1016/j.jhazmat.2020.122529

    Article  CAS  Google Scholar 

  36. W. Zhao, H.X. Wang, X.N. Feng, Y.B. Zhang, S.M. Zhang, Control over the morphology of TiO2 hierarchically structured microspheres in solvothermal synthesis. Mater. Lett. 158, 174–177 (2015). https://doi.org/10.1016/j.matlet.2015.05.131

    Article  CAS  Google Scholar 

  37. B.C. Qiu, M.Y. Xing, J.L. Zhang, Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136(16), 5852–5855 (2014). https://doi.org/10.1021/ja500873u

    Article  CAS  Google Scholar 

  38. P. Kumar, U.K. Thakur, K. Alam, P. Kar, R. Kisslinger, S. Zeng, K. Shankar, Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting. Carbon 137, 174–187 (2018). https://doi.org/10.1016/j.carbon.2018.05.019

    Article  CAS  Google Scholar 

  39. L. Pan, J.J. Zou, X.Y. Liu, X.J. Liu, S. Wang, X. Zhang, L. Wang, Visible-light-induced photodegradation of rhodamine B over hierarchical TiO2: effects of storage period and water-mediated adsorption switch. Ind. Eng. Chem. Res. 51(39), 12782–12786 (2012). https://doi.org/10.1021/ie3019033

    Article  CAS  Google Scholar 

  40. L. Yan, J. Hou, T. Li, Y. Wang, C. Liu, T. Zhou, G. Che, Tremella-like integrated carbon nitride with polyvinylimine-doped for enhancing photocatalytic degradation and hydrogen evolution performances. Sep. Purif. Technol. 279, 119766 (2021). https://doi.org/10.1016/j.seppur.2021.119766

    Article  CAS  Google Scholar 

  41. X. Deng, D. Wang, H. Li, W. Jiang, T. Zhou, Y. Wen, L. Wang, Boosting interfacial charge separation and photocatalytic activity of 2D/2D g-C3N4/ZnIn2S4 S-scheme heterojunction under visible light irradiation. J. Alloys Compd. 894, 162209 (2022). https://doi.org/10.1016/j.jallcom.2021.162209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of Tianjin (Grant No. 18JCYBJC87600).

Author information

Authors and Affiliations

Authors

Contributions

SL: data curation, writing original draft, formal analysis, writing-review & editing. WZ: funding acquisition, resources, writing—review & editing, conceptualization. DX: data curation, investigation. YY: data curation, investigation. JM: supervision, conceptualization. YG: data curation, investigation.

Corresponding author

Correspondence to Wei Zhao.

Ethics declarations

Conflict of interest

The authors have no relevant financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 364 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhao, W., Xiong, D. et al. g-C3N4/TiO2 uniformly distributed microspheres: preparation for enhanced photocatalytic performance by co-calcination. J Mater Sci: Mater Electron 34, 47 (2023). https://doi.org/10.1007/s10854-022-09391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09391-3

Navigation