Correction

Correction to: Study of high temperature electrical conductivity and thermoelectric performance in Mg₂₋ $_{\delta}$ Si_{0.35-x}Sn_{0.65}Ge_x (δ = 0–0.04 and x = 0, 0.05) intermetallic alloys

Sushmitha P. Rao¹, Pritam Sarkar², Ajay Singh², R. N. Bhowmik³, and Vijaylakshmi Dayal^{1,*} (D)

¹ Department of Physics, Maharaja Institute of Technology Mysore (Aff. to. VTU-Belagavi), Mandya, Karnataka 571 477, India

² Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Center, Mumbai 400 085, India

³ Department of Physics, Pondicherry University, R. Venkataraman Nagar, Kalapet, Pondicherry 605 014, India

Published online:

21 November 2022

© Springer Science+Business Media, LLC, part of Springer Nature 2022

Correction to:

J Mater Sci: Mater Electron (2022) 33:17842–17854 https://doi.org/10.1007/s10854-022-08648-1

An article of this title was published in the *Journal of Material Science: Material in Electronics* (2022) 33: 17842–17854. Unfortunately, an error occurred in the calculation of % change in the relevant parameter mentioned in Table 4 and the related explanation in the text. The corrections are incorporated in Table 4 and should be read as presented below: The followings are the instances influenced due to correction in Table 4 and must be read as follows:

Page 17842 (abstract), line (14–17): Should be read as "The synergetic confluence of improved power factor and low thermal conductivity in Mg_{1.98}Si_{0.3-}Sn_{0.65}Ge_{0.05} resulted in the highest *ZT* value of 0.08 at ~ 523 K, which is ~ **300**% higher than the *ZT* value (~ 0.02) of the parent Mg₂Si_{0.35}Sn_{0.65} alloy".

Page 17851, line (14–18): Should be read as "At room temperature, k_L of Ge doped alloys are nearly ~ **61**% lower than that of the parent alloy, suggesting that Ge substitution increases phonon scattering due to the complexity of band structure".

The original article can be found online at https://doi.org/10.1007/s10854-022-08648-1.

Address correspondence to E-mail: drvldayal@gmail.com

TADE 4 EXPERIMENTAL VALUES and percentage changes are taomated from the experimental data of $M22.5500.35.5010.6500x$ ($\theta = 0, 0.02, 0.04$) and $(x = 0, 0.02)$ at 2.25 E	e changes are taoulat	ica moni nic cyberni	CIIIAI UAIA UI IVIE2-010.3	$(5-x^{3})$ 10.65 UEx (0 - 0,	0.02, 0.04) allu (x –	- 0, U.U.J al JZ.	2
Samples	σ (S/m)	S (V/K)	PF (W/mK ²)	K (W/mK)	K ₁ (W/mK)	ZT	
	$\times 10^4$	× 10 ⁻⁶	× 10 ⁻⁶				
$Mg_{2}Si_{0.35}Sn_{0.65}$ to $Mg_{1.98}Si_{0.30}Sn_{0.65}Ge_{0.05}$ 1.18 \downarrow by $\sim 9\%$ 116 \uparrow by $\sim 37\%$ 160 \uparrow by $\sim 70\%$ 3.86 \downarrow by $\sim 55\%$ 3.74 \downarrow by $\sim 56\%$ 0.02 \uparrow by $\sim 300\%$	1.18 \downarrow by $\sim 9\%$	116 \uparrow by $\sim 37^{\circ}$	$6 160 \uparrow \text{ by } \sim 70\%$	$3.86 \downarrow by \sim 55\%$	$6 3.74 \downarrow by \sim 50$	6% 0.02 †	by ~ 300%
	1.07	159	272	1.74	1.63	0.08	
$Mg_2Si_{0.35}Sn_{0.65}$ to $Mg_{1.96}Si_{0.30}Sn_{0.65}Ge_{0.05}$ 1.18 \downarrow by ~ 41%	1.18 \downarrow by $\sim 41\%$		116 \uparrow by $\sim 65\%$ 160 \uparrow by $\sim 61\%$	3.86	\downarrow by ~ 56% 3.74 \downarrow by ~ 56%	0.02	\uparrow by $\sim~290\%$
	0.7	191	257	1.7	1.63	0.078	

Page 17851, line (36–41): Should be read as "Overall, we observe that *ZT* increases by ~ **300**% and ~ **290**% in Mg_{1.98}Si_{0.30}Sn_{0.65}Ge_{0.05} and Mg_{1.96}Si_{0.30}Sn_{0.65}Ge_{0.05}, respectively, compared to Mg₂Si_{0.35}Sn_{0.65} at 523 K; this further suggests that Ge substitution reduces the bipolar effect, significantly improving the thermoelectric figure-of-merit".

Page 17851, line (58–62): Should be read as "Furthermore, the increase of *ZT* by ~ **167**% Mg_{1.96-}Si_{0.30}Sn_{0.65}Ge_{0.05} (this study) than Mg₂Si [61] may be attributed to the reduction of bipolar effect by Ge substitution, which facilitates reduction in thermal conductivity, as discussed earlier".

The authors apologise for any inconvenience caused.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.