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ABSTRACT

Three-phase polymer electrolyte nanocomposite composed of polyvinyl-alcohol

(PVA), manganese(II) chloride (MnCl2), and multiwall carbon nanotubes

(MWCNTs) were prepared using the cast techniques. Impedance spectroscopy

was used to investigate the AC electrical conductivity (rac) of two- and three-

phase samples with different weight ratios of multiwall carbon nanotubes

(MWCNTs) over a wide frequency range and at various fixed temperatures

(30 �C to 120 �C). The frequency-dependent nature of rac was seen to follow

Jonscher’s power law. The redistribution of accumulated charges was used to

explain the change in the pre-exponent (n) and the constant (A) after the per-

colation threshold. As the temperature approached the glass transition tem-

perature, the mobility of ions and polymeric chains also played an important

role in this change. The Correlated Barrier Hopping (CBH) model was consid-

ered as the most predicted model for the samples at temperatures below 100 �C.
However, the Quantum Mechanical Tunneling (QMT) model was predicted to

be the most prevalent conduction model for temperatures greater than 100 �C.
The values of the activation energy calculated from both Z’’ and M’’ are mostly

close. Equivalent circuits were used to analyze the impedance spectra of the

two- and three-phase samples. An attempt was made to explain the impedance

behavior of the samples through the elements participating in the equivalent

circuits.

1 Introduction

Electrolytic polymers represent one of the materials

which attract the interest of many researchers

because of their potential applications in solid-state

batteries, chemical sensors, solar cells, and electrolyte

gate transistors [1–16]. The electrolytic polymers are

characterized by their high ionic properties, good

mechanical properties, low electrochemical stability,

low cost, ease of handling, easy manufacturing as

thin films, and it is environmentally friendly. The

development of polymers is not only by the addition

of some kind of salts for polymers to form polymer

electrolyte, but also the researchers have observed
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that the addition of nanomaterials (metals, semicon-

ductors, organic and inorganic, fibers, and oxides, as

well as carbon nanotubes) can contribute to improv-

ing some physical and/or chemical properties of the

polymer electrolyte. This three-phase electrolytic

nanocomposite may have specific properties which

will be useful in technological applications such as

supercapacitors sensors and actuators [17–21].

The improvement of the physical properties of the

polymer electrolyte can be through adding carbon

nanomaterials (Carbon nanoparticles [22, 23], Carbon

nanofibers [24–26], multiwall carbon nanotubes

MWCNTs [27–30], etc.[31, 32]), or by addition of

ceramic nanomaterials (ZnO [33, 34], TiO2 [35, 36],

BaTiO3 [37, 38], MnO2 [39, 40], etc.) or using a con-

ductive polymer as third phase (PANi [41], P3OT

[42], etc.).

Polyvinyl alcohol (PVA) electrolyte has been used

as basic material for the preparation of three-phase

nanocomposite. In the field of energy-storage devices,

polyaniline-based electrodes are solidified in the

H2SO4-polyvinyl alcohol gel electrolyte. This two-

phase electrolyte was used to construct paper-like

polymer supercapacitors using MWCNTs (as the

third phase) [43]. Pan et al. [44] investigate the effect

of CNTs on the ionic conductivity of the potassium

hydroxide (KOH)-doped PVA/CNT membrane. The

ionic conductivity increased by adding the function-

alized CNT. They found that the methanol perme-

ability was suppressed in the three-phase samples

(PVA/KOH/CNTs) compared with the polymer

electrolyte two-phase samples (PVA/KOH). Tu et al.

[45] used PVA/Li2SO4/BMIMI gel polymer elec-

trolyte to construct activated carbon-based superca-

pacitors. They investigate the prepared

supercapacitors using cyclic voltammetry, galvano-

static charge–discharge, impedance spectroscopy

techniques, and mechanical performance. Such flexi-

ble supercapacitors show better cyclic durability and

excellent mechanical implementation. A wearable

electronic textile three-phase nanocomposite based

on PVA/SWCNTs humidity sensor was investigated

by Zhou et al. [46]. For the application of Lithium-ion

capacitors (LICs), poly(vinylidene fluoride-hexafluo-

ropropylene) (PVDF-HFP) co-doped with multi-

walled carbon nanotubes (MWCNT) via weak bond

interactions of gel polymer electrolytes (GPEs) was

investigated by Shengrui Yu et.al. [47]. MWCNTs/

PANI electrolyte composites were synthesized by the

in situ polymerization technique. Under optimal

conditions, the electrolyte with 4% MWCNTs/PANI

and a salt concentration of 0.5 g showed a higher

ionic conductivity of 197.4 lS/cm. The ionic con-

ductivity of electrolytes affects the photovoltaic per-

formance of fabricated dye-sensitized solar cells [48].

The dynamics of ionic transport and thermoelectric

properties of a methacrylate-based polymer blend in

combination with a lithium salt and MWCNTs was

investigated by Maximilian Frank et. al. [49]. The

addition of MWCNTs to the polymer electrolyte

allows for variation of the Seebeck coefficient as well

as the ionic and electronic conductivities.

A remarkable increase in the electrical resistance of

a fiber sensor increases significantly after spraying

water. Samples prepared using 1:5 weight ratios of

SWCNTs/PVA showed high sensitivity in high rel-

ative humidity. Three-phase system composed of

MnCl2, PVA and PEG with different weight per-

centages of MnCl2 was prepared and investigated

using Hall measurements [50]. Electrical conductivity

of the composite increases with increasing the salt

wt.%. The calculated activation energies were

decreased with increasing salt wt.%. Dielectric mea-

surement was also investigated for PVA: PEG/MnCl2
three-phase composites.

There is an issue usually discussed in the study of

ac-conductivity, which concerns the link between the

values of the parameters n and A when the Jonscher’s

power law is applied [51], and the state of the

material under study. Is there a direct relation

between n and the state of the filler inside the sample

(e.g., before and after percolation) or the sample

morphology (e.g., two-phase, three-phase, filler

aggregation or segregation process)? During this

article, the authors aim to answer this question and

link these parameters (n and A) with the state of the

material under investigation, in addition to studying

some other properties. Also, an attempt to improve

the distribution of carbon tubes with polymer by

grinding and soaking it in the salt solution (to reduce

the attractiveness of the MWCNTs between each

other) before adding to the polymer as a kind of

physical treatment. Also, adding salt to the host

polymer will contribute significantly to improving

the electrical properties of the nanocomposite.

Therefore, the research will investigate the ac-con-

ductivity for a group of two-phase (polymer elec-

trolytic sample) and three-phase samples (polymer

electrolyte loaded with MWCNTs) before and after

percolation.
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2 Experimental

2.1 Materials

Analytical-grade PVA (with average Mwt. of 130,000

and 99% degree of hydrolysis) as host polymer and

Manganese(II) chloride hydrate (Mwt. of 125.84)

were purchased from Aldrich. Functionalized

MWCNTs were purchased from Chengdu Organic

Chemicals Co. Ltd., China (diameter[ 50 nm,

10–20 mm length, and purity[ 95%).

2.2 Sample preparation

Three-phase polymer electrolyte nanocomposite

samples (PVA ? 5% MnCl2 ? x wt.% MWCNTs)

were prepared using the cast techniques according to

the following steps:

1 Specific weight of the polymer was dissolved in

15 ml of distilled water at 85 �C. The solution was

continuously stirred using a magnetic stirrer for

3 h.

2 Manganese chloride salt was weighted to be

about 5 wt.% of the total sample weight. The salt

was dissolved in 10 ml of distilled water and then

added to different weight ratios of MWCNTs (0.1,

0.4, 0.8, 1.0, 2.0 wt. %). The mixture was manually

grinded in the MnCl2 solution for 5 min (for

MWCNTs untangling) and left for soaking (1 h)

before adding the polymer solution. The three-

phase solution was mixed using ultrasonicator

for 2 h and transferred to a magnetic stirrer and

stirred overnight (at & 60 �C) to ensure the

mixture homogeneity. The homogenous mixture

was poured into flat glass plates and kept inside

the thermal chamber (40–45 �C) and left to dry.

2.3 Dielectric measurements

The impedance (Z) and AC conductivity (rac) of the

composites were measured using a Keithly 4200 SCS

(Semiconductor Characterization System) at fre-

quencies varying from 100 Hz to 10 MHz. Both Z and

d (phase angle) were collected automatically after

averaging then Z’ (real part of impedance), Z’’

(imaginary part of impedance), and rac (AC con-

ductivity) were calculated. Copper conductive plates

were used on both sides of the sample as conductive

electrodes.

3 Discussion

Usually, pure polymers (other than conductive

polymers) belong to the category of insulating

materials due to the shortage of free-charge carriers.

Therefore, their response to the applied AC field will

be related to the dielectric relaxation effects which

can be attributed to the transfer of space charges, the

rotation of permanent dipoles in addition to the

induced dipoles, segment mobility of polar groups,

interfacial charge, as well as the relaxation due to

transition of the materials from the glassy state to the

rubber state. The addition of salts and/or nano-fillers

may have an influence or impact on these relaxations

process. Also, the interaction between the nano-fillers

and polymer chains may cause a complex behavior

for the relaxation process of the composite. The

existence of induced polarization and interfacial

polarization can also complicate the relaxation

process.

The AC conductivity rac can be calculated by the

following relation:

rac ¼ 2pfe0e0 tan dð Þ ð1Þ

where e0 and e0 are the dielectric constant of the

free space and the material, respectively, and tan(d) is
the loss tangent or dissipation factor.

Figure 1 shows the frequency dependence of the

AC conductivity (rac) at different temperatures (from

30 to 120 �C) for PVA, PVA/MnCl2, and PVA/

MnCl2/MWCNTs samples. It is found that rac

increases with the increase in temperature (typical

behavior for most insulating polymer) [52]. The

increase in the temperature increases the mobility of

charge carriers in the polymer matrix and polymer

composite and also, increases the number of transit

sites [51]. This will increase the ability of the charge

carrier to transfer from one transit site to another and

the charge carrier will be able to overcome the

potential barrier to contribute in the conduction. It is

noted that the frequency at which the dispersion

occurs (hopping frequency xH) is shifted toward

higher frequency as the temperature increases. In this

case, it is possible to apply the Jonscher’s power law

(JPL) [51]:

rac xð Þ ¼ rdc þ Axn ð2Þ

where x is the angular frequency, rdc is the dc-con-

ductivity (i.e., independent of frequency at x % 0),

A is a temperature-dependent constant, and n is an

J Mater Sci: Mater Electron (2022) 33:24137–24150 24139



exponent (0 B n B 1). Both values (A and n) depend

on the temperature. The parameter A represents the

strength of polarizability in the sample, whereas the

parameter n represents the reactivity between the

sample constituent (such as the interaction between

the fillers with each other or the fillers with the

polymeric chains or the interaction of the polymeric

chains with each other in the case of the polymer

blend).

The variation of n with temperature depends on

the type of conduction mechanism within the sample

which depends on temperature, frequency, and

(A) (B)

(C) (D)

(E)

Fig. 1 Variation of AC conductivity with frequency at different temperatures for PVA, PVA/MnCl2, and PVA/MnCl2/MWCNTs samples
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sample constituent. Quantum mechanical tunneling

(QMT), correlated barrier hopping (CBH), non-over-

lapping small polaron tunneling (SPT), and overlap-

ping large polaron tunneling (OLPT) are theoretical

models that can be used to identify the conduction

mechanism in the case of AC conductivity [53].

For pure PVA samples, the general Jonscher power

law equation (Eq. 2) did not give a good fitting when

applying the following initial conditions: rac C 0

and 0 B n B 1, ; when using the modified Jonscher

equation (Eq. 3) with the following initial condi-

tions—rac C 0, 0 B n1 B 1 , and 0 B n2 B 2— a good

fitting (Fig. 2) has been obtained.

rac ¼ racþA1x
n1 þ A2x

n2 ð3Þ

For the two-phase sample (PVA/MnCl2), Jonscher

power law (Eq. 2) was applied and it gives a good

fitting (between 0.998 and 1).The temperature

dependence of n and A is represented in Fig. 3a for

the two-phase sample. The values of n decrease as

temperature increases and it varied between 0.88 and

0.72 with average of 0.80. The constant A increases

gradually with temperature and reach its maximum

value at about 80 �C and then the values changed

between 4.35 9 10–7 and 3.12 9 10-7. The changes in

the values of n and A (see Fig. 3a) indicate that, as the

temperature increases (thermal activation), the

polarizability increases (accumulation of the charge

carriers and ions) in addition to the increase of the

interfacial polarization. So, the ion–ion interaction

and ion–polymer interaction decrease (i.e., n de-

creases). At near the glass transition temperature (Tg),

the chain mobility increases which in turn allows the

movement of ions and releases the accumulative

charge carriers, which are reflected as reductions in

the values of A.

The sample loaded with 0.1 wt.% MWCNTs

(Fig. 3b) behaves similarly to the electrolytic sample

(PVA/MnCl2). The general behavior of the constant

A with temperature is a gradual increase, and near

the glass transition the values of n oscillate around

0.93 and then continue to increase (reach to 1 at

120 �C). Moreover, the values of n behave almost

opposite to the behavior of the parameter A. This

behavior can be explained by following the same

approach as the previous interpretation, as the sam-

ple is still before the percolation threshold.

Samples loaded with 0.4 wt.% and 0.8 wt.% MnCl2
(Figs. 3c, d), which exceed the percolation threshold,

have to some extent a different behavior where the

value of n gradually decreased and then became

almost constant over a wide range of temperatures

(from 50 to 120 �C). For the sample loaded with

0.8wt%, n decreases gradually and increases dra-

matically above 100 �C. The constant A for both

samples (0.4 wt.% and 0.8 wt.% MnCl2) shows a peak

around 80 �C and is more symmetrical for the sample

loaded with 0.8 wt.% MnCl2.

The behavior of samples after the percolation can

be explained as follows:

1. Increasing the constant A with temperatures,

below the glass transition temperature, may be

due to the accumulation of ions and their lack of

mobility. In addition, the presence of the

Fig. 2 The frequency dependence of ac-conductivity for pure PVA at 80 and 110 �C. The full lines is given by JPL (Eq. 2) and broken

lines are given by modified JPL (Eq. 3) with
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interfacial polarization around those ions will

contribute to increasing the polarizability of the

sample.

2. At temperatures above the glass transition, the

mobility of the polymeric chains will increase,

allowing more mobility for the ions to contribute

to the conduction process. As well as, the leakage

of charges carriers, which contributes to the

interfacial polarization, causes a decrease in the

value of the constant A with temperature.

3. Also, at high temperatures (T[Tg) and as a

result of the thermal expansion of the polymer in

addition to the ease of movement of polymeric

chains and charge carriers, the reactivity between

the different elements will decrease, which is

reflected as a decrease in the value of n. At

temperatures greater than 100 �C, sample loaded

with 0.8 wt.% can be excluded from this behavior,

where n increases with increasing temperature.

This can be attributed to the redistribution pro-

cess of the filler and the formation of the filler

aggregation.

By looking at the values of n and its temperature

dependence, one can assume that the CBH model

(which assume the charge carriers hop between two

sites above the Coulomb barrier) to be the most pre-

dominant model for the samples under test, espe-

cially during temperatures below 100 �C, where the

value of the parameter n decreases, and its values

range between 0.8 and 1. However, for temperatures

greater than 100 �C, the QMT model (which depends

on phonon-assisted electron tunneling) is expected to

be the most predominant conduction model.

Figure 4A–D represents the variation in AC con-

ductivity versus frequency for pure, two-phase, and

three-phase composite samples at 30, 60, 90, and

120 �C. It is seeming that the addition of MnCl2 to

PVA increases the AC conductivity. Also rac increa-

ses with the increasing MWCNTs and there is an

abrupt increase at 0.4 wt.% MWCNTs suggesting a

percolation behavior. It is also noted that the addition

of MWCNTs from 0.4 to 0.8 wt.% did not change the

value of the AC conductivity particularly below

90 �C. This can be attributed to the uniform distri-

bution of fillers within the electrolytic polymer and

Fig. 3 Variation of n exponent and A constant vs. temperature for PVA/MnCl2 and PVA/MnCl2/MWCNTs samples
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that the presence of salt helped increase the degree of

freedom of movement of the MWCNTs, which

caused a uniform distribution of those fillers and

reduce the percolation threshold.

When the concentrations of the MWCNTs exceed

the 0.8 wt.%, it is noticed that the AC conductivity

decreases, and this can be attributed to the formation

of aggregates (due to the interaction of the fillers with

each other) and the formation of conductive fillers

islands separated by an insulating medium of the

electrolytic polymer.

As the temperature increases a plateau region

which is an indicator to the dc-conductivity contri-

bution increases. This gradual change from dc pla-

teau to (ac) dispersive region designates the

distribution of relaxation times. The frequency

dependence of electrical conductivity can be divided

into distinctive regions implying the existence of

various dissipated effects [54].

Also, the increase of the AC conductivity at higher

temperature ([ 90 �C) can be attributed to the ther-

mal expansion of the polymer matrix which leads to

increase the chain mobility, encouraging the trapped

ions to contribute in the conduction and hence

increases the ionic conduction [52, 55]. The contri-

bution of the segmental motion of the chains cannot

neglect, since at temperatures above the glass tran-

sition the mobility of the chain increases and the

chain segment contributes directly in the conduction

mechanism.

It is known that the dielectric loss arises from the

dissipation of the acquired energy during the charge

or electric dipole movement in an alternating electric

field. This energy loss is due to the phase lag between

the charge or dipole response and the applied field.

Fig. 4 Variation of AC conductivity with frequency at different MWCNTs loading and fixed temperature for PVA/MnCl2 and PVA/

MnCl2/MWCNTs samples
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Figure 5 shows the loss factor (tan d) for the two-

phase and three-phase samples at different temper-

atures. The dielectric loss curves for the samples

follow the typical behavior, where the loss decreases

gradually as the frequency increases. This behavior

can be explained by considering the response of the

charges and dipoles to the applied electric field at low

and high frequencies. When the field frequency is

low, the response of the charges (or dipoles) to the

electric field will be high, so the loss factor is also

high. The loss gradually decreases with increasing

frequency, due to the weak response of field dipoles.

This behavior depends on the nature of the sample,

frequency range, and temperature. In the present

case, Maxwell–Wagner–Sillars (MWS) interfacial

polarization represents the main source of dielectric

loss at low frequency [56].

The dielectric loss increases with increasing load-

ing of MWCNTs up to 0.8 wt.% and then decreases

sharply for 1 wt.% and 2 wt.% loaded samples. This

change can be interpreted as follows:

1. Above the percolation threshold, the dielectric

loss increases due to the formation of a network

of capacitors and resistors through the sample,

and these components are randomly connected in

series and parallel [57].

2. When the loading of MWCNTs exceeds a certain

level, the formation of MWCNTs aggregation

(isolated islands) will occur and the number of

micro-capacitors and resistors will decrease.

Therefore, the dielectric loss will also decrease.

It is also noted that, for temperatures above Tg, the

loss spectra were characterized by a definite peak for

samples loaded with MWCNTs up to 0.8 wt.%. These

(A)

(C)

(E)

(D)

(B)

Fig. 5 Variation of tan(d) with frequency at different MWCNTs loading and fixed temperature for PVA/MnCl2 and PVA/MnCl2/MWCNTs

samples
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peaks shifted toward higher frequency with

MWCNTs loading, indicating that the relaxation time

decreases on increasing MWCNTs loading. This can

be attributed to the fact that within the percolation

region, the resistive and capacitive components of the

networks decrease as the filler loading increases

(before aggregation formation) reducing the relax-

ation time. A noticeable shift for the loss tangent peak

toward the higher frequency side with temperature

increase is attributed to the thermal activation of the

charge and electric dipoles [58, 59].

Zsimwin program was used to find the equivalent

circuit of the samples. Figures 6 and 7 show the fit-

ting between the theoretical and experimental values

of the two-phase (PVA/MnCl2) and three-phase

(PVA/MnCl2/MWCNTs) samples at temperatures 60

and 100 �C as representative results.

The equivalent circuit depicted in Fig. 3 is

employed to analyze the impedance.

The equivalent circuits depicted in Fig. 8A, B are

employed to analyze the impedance spectra for the

two- and three-phase samples. In both circuits, R1

Fig. 6 Cole–Cole fit of two- and three-phase samples at 60 �C; the open symbols are the experimental data and the solid lines are the fitted

curves
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represents the electrode resistance, placed in series

with the resistance of the polymer media (R2). Q1 is

the imperfect capacitance due to the dielectric nature

of the polymer media, R3 is the resistance to the

transfer of charge through the electrolytic media and

Q2 is a constant phase element representing the

capacity of the interfacial polarization at the interface

between the MWCNTs and the electrolyte, while R4

and Q3 represent the resistance to the transfer of

charge between MWCNTs and the constant phase

element (capacitance) between the MWCNTs aggre-

gates at temperature 60 �C. At 100 �C and due to

thermal expansion the CPE connected with R4 will

change to W which represents the diffusion of charge

between the MWCNTs aggregates.

Fig. 7 Cole–Cole fit of two-and three-phase samples at 100 �C; the open symbols are the experimental data and the solid lines are the

fitted curves

Fig. 8 Electrical equivalent

circuit model representing

impedance spectra to fit the

experimental complex

impedance, for two-and three-

phase samples
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4 Conclusion

Casting techniques has been utilized for the prepa-

ration of two-phase and three-phase electrolyte

nanocomposite samples (PVA/MnCl2 and PVA/

MnCl2/MWCNTs). The samples were loaded with

different weight ratios of MWCNTs (0.1, 0.4, 0.8, 1.0,

2.0 wt. %). The results investigate the dielectric

properties for the two- and three-phase samples

within the frequency range of 100–1*106 Hz and at

various temperatures (30 to 120 �C). The addition of

MWCNTs to the electrolyte sample significantly

improved the electrical conductivity of the composite

(e.g., about three orders of magnitude at 500 Hz at

60�). A sudden increase was observed at 0.4 wt.%

MWCNTs indicating leaching behavior. The ac–con-

ductivity spectra were following Jonscher’s power

law. For PVA/MnCl2 sample, the values of n (ex-

ponent) decreased as temperature increased and

varied between 0.88 and 0.72 with an average of 0.80.

Above the percolation threshold, the variation of n

and A was interpreted by considering the redistri-

bution of the accumulated charges (close to Tg)

beside the change in the ions mobility and polymeric

chains. The CBH model is the most predicted model

for the samples under test, especially at temperatures

below 100 �C, where the parameter n values decrease

and range from 0.8 to 1. However, the QMT model is

predicted to be the most prevalent conduction model

for temperatures greater than 100 �C.
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