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ABSTRACT

A comparative analysis is performed to study the resonant tunneling through

symmetric multiple double-barrier resonant tunneling heterostructure materials

composed of nanoscale semiconductors ZnSe/BeTe, AlAs/GaAs, InGaAs/AlI-

nAs, and AlGaAs/GaAs. Two techniques are applied in the present investiga-

tion for calculating the quasi-resonant energy states and their associated

lifetimes in nanoscale double-barrier quantum well heterostructures. The first

technique is based on the complex energy solution of the time-dependent

Schrödinger equation with the time–energy uncertainty condition. The second

one is employing the transfer matrix method. The quasi-resonant energies,

lifetimes, and frequencies in nanoscale double-barrier quantum well

heterostructures are calculated by both methods and compared. The validity

and accuracy of both techniques are tested and compared extensively with

various current numerical methods. Excellent agreements are obtained between

our results and the available experimental and theoretical values. It is also found

that the complex energy technique is recommended when handling the quasi-

energy states and quasi-lifetimes of novel nanoscale devices.

1 Introduction

The recent modern techniques enabled bandgap

engineering in semiconductor heterostructure mate-

rials to fabricate and enhance the performance of new

optoelectronic devices based on III–V compounds

and III nitride alloys [1]. These nanoscale devices

such as quantum wells (double, triple, and multi-

barriers), quantum dots, and quantum wires [2] have

enormous applications in industry and daily life use

[3]. Another novel fabricated nanostructures are the

TiO2 thin films that recommended for optical anti-

counterfeiting applications [4, 5] and optoelectron

devices [6]. The resonant tunneling phenomena in

semiconductor devices attracted great attention. Over

the past decades, resonant tunneling heterostructures

(RTHSs) have been widely used for studying funda-

mental physical processes and developing novel and

high-speed functional devices. Most of the early

studies were focused on double-barrier RTHSs
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(DBRTHSs), which consist of a quantum well con-

fined by two thin barriers and a pair of contacts. The

resonant quasi-level lifetime or frequency is one of

the most important issues concerning the develop-

ment of novel nanoscale electronic devices. Resonant

transmission probability in different semiconductor

heterostructures having extremely narrow dimen-

sions in presence of electric bias has been investi-

gated following the pioneering works by Esaki and

Tsu [7]. Various numerical techniques are adopted

thereafter by eminent researchers for near accurate

computational purposes, like variational method [8],

Airy’s function approach [9], weighted potential

method [10], finite element method [11], and transfer

matrix technique (TMT) [12–14]. Transmission coef-

ficients were computed for triple-barrier

heterostructures [15–19] in the presence and absence

of an electric field. This technique was extended for

the analysis of superlattice nanostructures [20, 21].

Elabsy and Elkenany [22] studied the effect of the

nonparabolicity on the resonant lifetimes and reso-

nant energies of symmetric GaAs/AlxGa1-xAs dou-

ble-barrier nanostructures.

The present work performs a comparative theo-

retical analysis for calculating the quasi-resonant

energies and their associated quasi-resonant lifetimes

in nanoscale double-barrier heterostructures in the

absence of an electric field. The complex energy

method and the transfer matrix technique are

employed and compared in the present computa-

tions. We consider atomic units in which

m0 = e = �h = 1.

2 Mathematical modeling

2.1 Transfer matrix technique

Figure 1 shows the heterostructure materials com-

posing the DBRTHS for this technique in which the

horizontal z-axis is chosen as the growth direction

and the vertical axis stands for the potential barrier

V(z) that arises from the bandgap discontinuity at the

interface of the two heterostructure materials with

height V0.

The calculations are based on the transfer matrix

method. The analysis takes into its account the total

energy and the transverse motion of the charged

carriers (electrons/holes) that is represented by the

thermal energy (which equals kBT, where T is the

absolute temperature given in Kelvin and kB is the

Boltzmann constant). The transmission coefficient,

Tr(E), for DBRTHS is determined from the relation

[23, 24]:

Tr Eð Þ ¼ 4

f11 þ f22ð Þ2þ k1f12 � f21
k1

� �2
� � ; ð1Þ

where

f11 ¼ cosh k1að Þ cosh k2cð Þ cos k1bð Þ � k1c
k2

sinh k2cð Þ sin k1bð Þ
� �

þ k2
c
sinh k2að Þ 1

k1
cosh k2cð Þ sin k1bð Þ þ c

k2
sinh k2cð Þ sin k1bð Þ

� �

ð2Þ

f12 ¼
c
k2

sinh k2að Þ cosh k2cð Þ cos k1bð Þ � k1c
k2

sinh k2cð Þ sin k1bð Þ
� �

þ cosh k2að Þ 1

k1
cosh k2cð Þ sin k1bð Þ þ c

k2
sinh k2cð Þ cos k1bð Þ

� �

ð3Þ

f21 ¼ cosh k2að Þ k2
c
sinh k2að Þ cos k1bð Þ � k1 cosh k2að Þ sin k1bð Þ

� �

þ k2
c
sinh k2að Þ k2

ck1
sinh k2að Þ sin k1bð Þ þ cosh k2að Þ cos k1bð Þ

� �

ð4Þ

f22 ¼
c
k2

sinh k2að Þ k2
c
sinh k2cð Þ cos k1bð Þ � k1 cosh k2cð Þ sin k1bð Þ

� �

þ cosh k2að Þ k2
ck1

sinh k2cð Þ sin k1bð Þ þ cosh k2cð Þ cos k1bð Þ
� �

:

ð5Þ

Fig. 1 Schematic representation of double-barrier heterostructure

semiconductors, a and c are the barrier thicknesses, and b is the

width of the quantum well
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One obtains a general form of the full width at half

maximum, FWHM of the resonant energy peak to

determine the lifetime at the resonance energy, Ern (n

is the peak order) by applying the time–energy

uncertainty condition as

sn ¼ �h

2DEn
; ð6Þ

where 2DEn is the FWHM of the resonant transmis-

sion peak which is given by [23]

2DEnj j ¼ 32Ern

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 � Ernð Þ=Ern

p

2þ a3
ffiffiffiffiffiffiffiffiffiffiffi
V0�Ern

Ern

qh i :
V0 � Ernð ÞErne�2a2

V2
0

ð7Þ

a2 ¼ k2c; a3 ¼ k3b ð8Þ

k1 ¼ k3 ¼ k5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�

1½E� Et

q
� ð9Þ

k2 ¼ k4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�

2 V0 � E� Et

c

� �	 
s
ð10Þ

c ¼
m�

2

�� ��
m�

1

�� �� : ð11Þ

In the above equations E is the total energy, while

Et is the transverse energy.

2.2 Complex energy technique

Figure 2 depicts the heterostructure materials com-

posing the DBRTHS for the complex energy tech-

nique in which the origin of the growth direction, the

z-axis, is at the center of the quantum well and V0 is

the height of the potential barrier V(z).

2.2.1 For even-quasi-states

One obtains the transcendental energy equation that

gives the allowed 1st, 3rd, …, etc. quasi-resonant

energies as [19, 21, 22]

v cot fð Þ
cf

þ
v 1þ e2dv
� 

þ icf 1� e2dv
� 

v 1� e2dv½ � þ icf 1þ e2dv½ � ¼ 0; ð12Þ

where

f ¼ k1a ð13Þ

d ¼ b

a
¼ barrier thickness

half well thickness
ð14Þ

X ¼ k2a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ui � cf2
� �q

; for Re f2
� �

\
Ui

c

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cf2 �Ui

� �q
; for Re f2

� �
[

Ui

c

8>><
>>:

ð15Þ

Ui ¼ 2m�
2a

2V0: ð16Þ

2.2.2 For odd-quasi-states

The transcendental energy equation that gives the

allowed 2nd, 4th, …, etc. quasi-resonant energies has

the form [19, 21, 22]

v tan fð Þ
cf

�
v 1þ e2dv
� 

þ icf 1� e2dv
� 

v 1� e2dv½ � þ icf 1þ e2dv½ � ¼ 0: ð17Þ

The solutions (roots) of Eqs. (12) and (17), g;n are

complex which computed numerically with n is the

root order that equals n = 1, 3, …, etc. for even quasi-

energy states (Eq. 12) and n = 2, 4, …, etc. for the odd

quasi-energy states (Eq. 17). The imaginary part of

these roots is related to the resonant energy width,

which is associated with the quasi-resonant lifetime,

sn. Follow the same manipulations as in Refs.

[22, 25–27], we obtain the n quasi-lifetime sn as

sn ¼ �1

2xnImðg2nÞ
: ð18Þ

The imaginary part of energy satisfies the time–

energy uncertainty principle, sn ¼ �h= 2 with �h ¼ 1

and 2¼ �2xnImðg2nÞ.

Fig. 2 Schematic representation of the double-barrier

heterostructure semiconductors. b is the barrier thickness and a

is the half-width of the quantum well
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3 Results and discussion

The present calculations are applied to nanoscale

DBRTHS materials composed of different semicon-

ductors as follows.

3.1 ZnSe/BeTe

The heterostructure semiconductors composed of the

system ZnSe/BeTe are presented as shown in Fig. 1

with ZnSe as the well region and BeTe as the barrier

region. Figure 3 displays that the variation of the

natural logarithm of the transmission coefficients as a

function of the resonant electron energy for nanoscale

ZnSe/BeTe DBRTHS at T = 4.2 K with m1 = m2-

= 0.17 and a height of the barrier V0 = 2.3 eV for

BeTe barrier thickness ‘‘b’’ of 6 nm and ZnSe well

width ‘‘a’’ of 6 nm. Seven resonant peaks appear in

the transmissivity which represents the resonant

peaks and occurred at the quasi-energy states as lis-

ted in Table 1. The results of the quasi-resonant

energies for both methods are computed by

employing Eqs. (1), (12), and (17). The lifetimes sn
values for charged carriers (electrons) are calculated

by applying the peak fit program and the uncertainty

relation given by Eq. (6). Table 1 lists the quasi-res-

onant energy, quasi-resonant lifetime, and quasi-

resonant frequency that are calculated by the two

different methods, complex energy method and

transfer matrix method for the nanoscale ZnSe/BeTe

DBRTHS at T = 4.2 K for m1 = m2 = 0.17 and a bar-

rier height V0 = 2.3 eV. There is an excellent agree-

ment between the present work results and the

experimental data given by Lunz et al. [28].

Figure 4 displays the variation of the base 10 log-

arithmic quasi-resonant lifetimes for the nanoscale

ZnSe/BeTe DBRTHS with the quasi-resonant energy

at T = 4.2 K for m1 = m2 = 0.17, a barrier height

V0 = 2.3 eV, a barrier thickness of 6 nm, and a well

width of 6 nm for the complex energy and transfer

matrix methods. The solid line is related to the

transfer matrix method, while the dashed line

involves the complex energy method. In Fig. 4, the

quasi-resonant lifetime decreases by increasing the

quasi-resonant energy, and the lifetimes associated

with both the complex energy method and transfer

matrix technique are given in Table 1. It is evident

from Fig. 4 and Table 1 that the calculated results for

both methods are in good accordance with each

other.

Fig. 3 Natural logarithmic transmission coefficients for nanoscale

ZnSe/BeTe double-barrier heterostructures versus quasi-resonant

energy at T = 4.2 K for m1 = m2 = 0.17 and a height of the

barrier V0 = 2.3 eV for a barrier thickness of 6 nm and a well

width of 6 nm

Table 1 Quasi-resonant energy, Ern (eV), quasi-resonant lifetime, sn
(s), and quasi-resonant frequency, fn (Hz), for nanoscale ZnSe/BeTe
double-barrier heterostructures at T = 4.2 K as functions of resonant

energy for m1 = m2 = 0.17 and a barrier height V0 = 2.3 eV for a
barrier thickness of 5 nm and a well width of 6 nm

Present work Experiment Ref [28]

Complex energy technique Transfer matrix method

Er (eV) sn(s) fn (Hz) Er (eV) sn (s) fn (Hz) Er (eV)

0.05037 3.4456 0.290225 0.05 1.08E3 9.26E - 04 0.05

0.20105 0.1578 6.337136 0.2 4.01E1 2.49E - 02 0.2

0.45061 8.23E - 03 121.5067 0.45 1.43 6.99E - 01 0.45

0.79611 2.59E - 04 3861.004 0.8 2.45E - 2 4.08E ? 01 0.8

1.2317 3.30E - 06 303,030.3 1.23 1.50E - 4 6.67E ? 03 1.23

1.74377 9.07E - 09 1.1E ? 08 1.75 1.13E - 7 8.85E ? 06 1.75

2.2693 9.01E - 13 1.11E ? 12 2.27 1.53E - 12 6.54E ? 11 2.27
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Figure 5 shows the natural logarithm of the quasi-

resonant lifetime for nanoscale ZnSe/BeTe double-

barrier heterostructures as a function of the quasi-

resonant energy at T = 4.2 K for m1 = m2 = 0.17, a

barrier height of V0 = 2.3 eV, a well width of 6 nm,

and for different values of the barrier thickness 5, 6,

and 7 nm. In Fig. 5 the quasi-resonant lifetime at a

constant (specific) quasi-resonant energy state

enhances by increasing the barrier thickness. This

result is because increasing the barrier thickness

diminishes the probability of penetrating the barrier

by electrons and so increases the lagging time in

penetrating the barrier to cross it to the neighboring

well. Also, at a constant barrier thickness the quasi-

lifetime decreases by increasing the quasi-resonant

energy, this is because the enhancement of resonant

energy leads to higher resonant energy states which

in turn diminish the lifetime according to the uncer-

tainty time–energy relation. Furthermore, raising the

energy makes the resonant peaks flat and their

energy spacing becomes broader and the full energy

width at half maximum (2DEn) increases, so the res-

onance lifetime decreases according to the formula 1/

2DEn as given in Eq. 6.

Figure 6 depicts the variation of the base 10 loga-

rithms of quasi-resonant frequencies for the nanos-

cale ZnSe/BeTe double-barrier heterostructures with

quasi-resonant energy at T = 4.2 K for m1 = m2-

= 0.17, a barrier height of V0 = 2.3 eV, and a well

width of 6 nm for different values of barrier thickness

Fig. 4 Logarithmical base 10

of quasi-resonant lifetimes for

nanoscale ZnSe/BeTe double-

barrier heterostructures at

T = 4.2 K as a function of

quasi-resonant energy for

m1 = m2 = 0.17, the height of

the barrier V0 = 2.3 eV for a

barrier thickness of 6 nm, and

a well width of 6 nm by two

different methods, solid line

(Transfer matrix method) and

dashed line (Complex energy

method)

Fig. 5 Logarithmical base 10 quasi-resonant lifetimes for ZnSe/

BeTe double-barrier heterostructures at T = 4.2 K as a function of

quasi-resonant energy for m1 = m2 = 0.17 and a height of the

barrier V0 = 2.3 eV for a well width of 6 nm for different values

of barrier thickness 5, 6, and 7 nm
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5, 6, and 7 nm. From Fig. 6, the quasi-resonant fre-

quency enhances by increasing the quasi-resonant

energy and decreases by increasing the barrier

thickness. This finding is because enhancing the

barrier thickness increases the quasi-lifetime which in

turn increases the quasi-frequency for electrons (due

to the inverse time–frequency relation). The resonant

peaks become flatter and their energy spacings

become wider with increasing energy. Thus, the

energy width at half maximum (2DEn) enhances so

the resonance frequency increases as sn = 1/fn
decreases.

3.2 GaAs/AlAs

The heterostructure semiconductors composed of the

system GaAs/AlAs are presented as shown in Fig. 1

with GaAs as the well region and AlAs as the barrier

region. We computed the quasi-resonant energies

and their associated quasi-lifetimes for the complex

energy and the transfer matrix techniques for differ-

ent nanoscale GaAs/AlAs heterostructures. Table 2

displays the results computed for the nanoscale

GaAs/AlAs double-barrier heterostructures with

parameters a = 6.2 nm and m1 = m2 = 0.069 for two

barrier heights V0 = 0.96 and 1.36 eV with different

values of barrier thickness. Excellent agreement is

obtained between the present work and the corre-

sponding published data by Xu and Okada [29].

Furthermore, the results for both the complex energy

and transfer matrix methods are in excellent accor-

dance. Figure 7 shows the natural logarithm of

transmission coefficients for nanoscale AlAs/GaAs

double-barrier heterostructures versus quasi-reso-

nant energy at nearly room temperature, T = 300 K

for m1 = m2 = 0.069 for two barrier heights V0 = 0.96

and 1.36 eV with barrier thickness of 2.8, 3.4, and

4.0 nm and a well width of 6.2 nm. In Fig. 7, there is a

single resonant peak that appears in the

Fig. 6 Logarithmical base 10 of the quasi-resonant frequencies

for ZnSe/BeTe double-barrier heterostructures as a function of

quasi-resonant energy at T = 4.2 K for m1 = m2 = 0.17, a height

of the barrier V0 = 2.3 eV, and a well width of 6 nm for different

values of barrier thickness 5, 6, and 7 nm

Table 2 Calculated quasi-

resonant energies and quasi-

lifetimes for nanoscale AlAs/

GaAs double-barrier

heterostructures for

a = 6.2 nm, m1 = m2 = 0.069,

and V0 = 0.96 eV and 1.36 eV

for different values of barrier

thickness

V0 = 0.96 eV

b(nm) Present work Ref. [29] sn (ps)

Complex energy method Transfer matrix technique

Er (eV) sn (ps) Er (eV) sn (ps)

2.8 0.090877 9.39 0.117 9.39 9.38

3.4 0.0909153 42.32 0.117 42.32 42.30

4.0 0.09092369 190.71 0.117 190.72 190.63

V0 = 1.36 eV

b(nm) Present work Ref. [29] sn (ps)

Complex energy method Transfer matrix technique

Er (eV) sn (ps) Er (eV) sn (ps)

2.8 0.0971304 48.01 0.123 48.05 47.90

3.4 0.097140 294.77 0.123 294.89 294.65

4.0 0.0971415 1809.80 0.123 1809.78 1809.07
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transmissivity for each value of the barrier thickness.

Table 2 presents the values obtained from Fig. 7 for

the resonant peaks and their associated lifetimes. The

calculated values for both techniques are in excellent

accordance with each other and with the published

data [29].

3.3 InGaAs/AlInAs

The heterostructure semiconductors composed of the

system InGaAs/AlInAs are presented as shown in

Fig. 1 with InGaAs as the well region and AlInAs as

the barrier region. The calculated resonant energies

and lifetimes for nanoscale InGaAs/AlInAs double-

barrier heterostructures with a = 6.0 nm, m1 = m2-

= 0.041, and V0 = 0.5 eV for different values of bar-

rier thickness are presented in Table 3. The calculated

results from both methods are in excellent agreement

with each other and with the published data in Ref.

[29]. Figure 8 exhibits the dependence of the natural

logarithm of the transmission coefficients for

InGaAs/AlInAs double-barrier heterostructures

upon the quasi-resonant energy at T = 300 K with

m1 = m2 = 0.041 and V0 = 0.5 eV for barrier thickness

of 4.0 and 7.0 nm and a well width of 6.0 nm. In

Fig. 8 there is a single resonant peak that appears in

the transmissivity for each value of the barrier

Fig. 7 Natural Logarithmic

transmission coefficients for

AlAs/GaAs double-barrier

heterostructures versus quasi-

resonant energy at T = 300 K

for m1 = m2 = 0.069, for

(a) V0 = 0.96 eV and

(b) V0 = 1.36 eV with barrier

thickness of 2.8, 3.4, and

4.0 nm and a well width of

6.2 nm

Table 3 Calculated quasi-resonant energies and quasi-lifetimes for nanoscale InGaAs/AlInAs double-barrier heterostructures for

a = 6.0 nm, m1 = m2 = 0.041, and V0 = 0.5 eV for different values of barrier thickness

b(nm) Present work Ref. [29] sn (ps)

Complex energy method Transfer matrix technique

Er (eV) sn (ps) Er (eV) sn (ps)

4.0 0.1168 0.539 0.140 0.541 0.539

7.0 0.1172 25.30 0.145 25.28 25.29

Fig. 8 Natural Logarithmic transmission coefficients for

nanoscale InGaAs/AlInAs double-barrier heterostructures versus

quasi-resonant energy at T = 300 K for m1 = m2 = 0.041 and

V0 = 0.5 eV for barrier thickness 4.0 nm and 7.0 nm and a well

width of 6.0 nm
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thickness. The quasi-resonant peaks occur at nearly

E1 = 0.14 eV and the associated lifetimes are

s1 = 0.541 ps, and 25.28 ps for b = 4.0 and 7.0 nm,

respectively.

3.4 AlGaAs/GaAs

The heterostructure semiconductors composed of the

system AlGaAs/GaAs are presented as shown in

Fig. 1 with GaAs as the well region and AlGaAs as

the barrier region. Table 4 lists the calculated quasi-

resonant energy and their associated quasi-lifetimes

obtained for nanoscale AlGaAs/GaAs double-barrier

structure for a = 5.0 nm, b = 2.0 nm, m1 = 0.067, m2-

= m1 ? 0.083 9 with x = 0.5, and a potential height

V0 = 0.5 eV. Our results are in good agreement with

those obtained by the recently used numerical

methods [29]. Figure 9 displays the dependence of

the natural logarithm of transmission coefficients for

AlxGa1-xAs/GaAs double-barrier structure upon

resonant energy at T = 300 K for a = 5.0 nm,

b = 2.0 nm, m1 = 0.067, m2 = m1 ? 0.083 9 with Al

mole fraction, x = 0.5, and V0 = 0.5 eV. In Fig. 9 there

are two resonant peaks appearing in the transmis-

sivity for the value of the barrier thickness of 2.0 nm.

The values of the resonant peaks and their associated

lifetimes are given in Table 4. These values fairly

agree well with that related to the complex energy

technique and with the experimental values [29].

The obtained resonant energies and lifetimes for

nanoscale AlGaAs/GaAs double-barrier

heterostructures for another composition a = 5.0 nm,

b = 5.0 nm, m1 = m2 = 0.067, and V0 = 0.23 eV are

listed in Table 5 and displayed in Fig. 10. Figure 10

depicts a single resonant peak that appears in the

transmissivity for the barrier thickness of 5.0 nm. The

resonant peak occurs at E1 = 0.106 eV and its asso-

ciated lifetime is s1 = 0.642 ps. The resonant energy

calculated by the complex energy technique is

0.08 eV. The values computed by the two methods

are very close to each other. The resonant lifetimes

calculated by the complex energy technique is 0.64 ps

and that found by the transfer matrix technique is

0.642 ps which are in good agreement with that cal-

culated by Shao et al. [30]. The value of lifetime

obtained by Sollner et al. [31] is 0.60 ps. Sollner et al.

addressed that the high-frequency values measured

with far IR lasers prove that the charge transport is

faster than about 1.0 9 10–13 s. The comparisons with

both experimental and theoretical data confirm the

validity of our results.

The calculated quasi-resonant energy and associ-

ated lifetimes obtained for nanoscale AlGaAs/GaAs

double-barrier heterostructures for a = 1.5 nm,

b = 2.0 nm, m1 = 0.069, m2 = m1 ? 0.083 9 with Al

centration of x = 0.3, and barrier height of

V0 = 0.24 eV are listed in Table 6. The variation of the

natural logarithm of the transmission coefficients for

AlGaAs/GaAs double-barrier heterostructures at

T = 300 K with resonant energy for a = 3.0 nm,

Table 4 Calculated quasi-resonant energy and quasi-lifetimes for AlGaAs/GaAs double-barrier heterostructures for a = 5.0 nm,

m1 = 0.067, m2 = m1 ? 0.083 9 with x = 0.5, and V0 = 0.5 eV

b(nm) Present work Experiment Ref. [29]

Complex energy technique Transfer matrix technique

Er1 (meV) s1 (ps) Er2 (meV) s2 (ps) Er1 (meV) s1(ps) Er2 (meV) s2 (ps) Er1 (meV) s1 (ps) Er2 (meV) s2 (ps)

2.0 93.91 0.253 376.89 0.024 119 0.217 395 0.017 92 0.254 412 0.024

Fig. 9 Natural logarithmic transmission coefficients for nanoscale

AlGaAs/GaAs double-barrier heterostructures versus quasi-

resonant energy at T = 300 K for a = 5.0 nm, b = 2.0 nm,

m1 = 0.067, m2 = m1 ? 0.083 x, where x = 0.5, and V0 = 0.5 eV
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b = 2.0 nm, m1 = 0.069, m2 = m1 ? 0.083 9 with Al

concentration of x = 0.3, and V0 = 0.24 eV is pre-

sented in Fig. 10. In Fig. 10 there is a single resonant

peak that appears in the transmissivity for the value

of the barrier thickness of 2.0 nm. The resonant peak

occurred at E1 = 0.144 eV and its associated lifetime

is s1 = 1.63 9 10–14 s. The complex energy technique

gives quasi-resonant energy of 0.12 eV and the asso-

ciated lifetime is 1.77 9 10–14 s. This implies that the

present two techniques give fairly similar values.

Capasso and Richard [32] obtained the quasi-reso-

nant energy of 0.119 eV and the associated quasi-

lifetime of 1.0 9 10–14 s. The present results are in

excellent agreement with the experimental values

obtained by Capasso and Richard [32] (Fig. 11).

4 Conclusion

The calculations for nanoscale resonant tunneling in

the group of nanoscale double-barrier resonant tun-

neling systems composed of ZnSe/BeTe, AlAs/

GaAs, InGaAs/AlInAs, and AlGaAs-GaAs

heterostructure semiconductors are obtained for the

transfer matrix and complex energy methods. The

validity and accuracy of these two techniques are

proved by significant comparisons with experimental

data and various numerical approaches now in use.

Our findings are in excellent accord with the avail-

able experimental and theoretical values. In the

recent decade, more attention is paid to the fabrica-

tion of nanoscale heterostructures composed of

Table 5 Calculated quasi-resonant energy and quasi-lifetime for nanoscale AlGaAs/GaAs double-barrier heterostructures for a = 5.0 nm,

m1 = m2 = 0.067, and V0 = 0.23 eV

b(nm) Complex energy technique Transfer matrix technique Experimental data Ref. [30] Experimental data Ref. [31]

Er1 (eV) s1 (ps) Er1 (eV) s1 (ps) Er1 (eV) s1 (ps) Er1 (eV) s1 (ps)

5.0 0.08 0.64 0.106 0.642 – 0.64 – 0.60

Fig. 10 Natural logarithmic transmission coefficients for AlGaAs/

GaAs double-barrier heterostructures at T = 300 K versus quasi-

resonant energy for a = 5.0 nm, b = 5.0 nm, m1 = m2 = 0.067,

and V0 = 0.23 eV

Table 6 Calculated quasi-resonant energy and lifetimes obtained for nanoscale AlGaAs/GaAs double-barrier heterostructures for

a = 1.5 nm, m1 = 0.069, m2 = m1 ? 0.083 9 with x = 0.3, and V0 = 0.24 eV

b(nm) Complex energy technique Transfer matrix technique Experiment Ref. [32]

Er1 (eV) s1 (s) Er1 (eV) s1 (s) Er1 (eV) s1 (s)

2.0 0.12 1.77 9 10–14 0.144 1.63 9 10–14 0.119 1.0 9 10–14

Fig. 11 Natural logarithmic transmission coefficients for

nanoscale AlGaAs/GaAs double-barrier heterostructures versus

resonant energy at T = 300 K for a = 3.0 nm, b = 2.0 nm,

m1 = 0.069, m2 = m1 ? 0.083 x, x = 0.3, and V0 = 0.24 eV
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semiconductors of abrupt bandgaps (such as quan-

tum wells, dots, and wires) for novel optoelectronic

devices for industrial applications and our daily uses

and to enhance the performance of these devices.

Nanoscale DBRTHS’s are types of these devices and

still attract attention in industry and daily use, so the

present work is aiming to analyze theoretically some

of the composition semiconductors fabricating these

devices and to ease the handling of their electronic

properties by considering two important widely used

techniques based on the effective mass theory, the

first is the transfer matrix method that determines the

resonant energy from the peak appears in the trans-

mission curve and another formula to determine the

corresponding lifetime. The second one is the com-

plex energy technique which is direct and easy to

manipulate and detects the quasi-resonant energy

and its associated lifetime from the imaginary part of

the root that arises from the solution of the tran-

scendental equations given in Eqs. 12 and 17. The

present comparative analysis shows good predictions

of the quasi-energy and its associated quasi-lifetime

for both methods and with those experimental and

published data. But the complex energy method is

better in both its accuracy and handling, so we rec-

ommend it for examining the electronic properties of

these nanoscales devices and other novel low-di-

mensional heterostructures.
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