Skip to main content
Log in

Hollow amorphous CoS to reversible storage sulfur as cathode of Li–S battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hollow amorphous CoS was synthesized via a sulfidation of zeolitic imidazolate framework-67 (ZIF-67), which possessed the characters of physical entrapment and chemical interaction between sulfur species. The prepared hollow amorphous CoS possessed high initial capacity of 1276 mAh·g−1 at 0.2 C and reversible capacity of 812 mAh·g−1 after 120 cycles, which was better than common CoS nanoparticles. What's more, it still delivered 606 mAh·g−1 during 200 cycles at 1 C with an average coulombic efficiency of about 98.2%. These above results indicated that the hollow amorphous CoS possessed great potential as the cathode of high-performance Li–S battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46(5), 1125–1134 (2002)

    Article  Google Scholar 

  2. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, Li-O2 and Li–S batteries with high energy storage. Nat. Mater. 11(1), 19–29 (2012)

    Article  CAS  Google Scholar 

  3. Z.W. Seh, Y. Sun, Q. Zhang, Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016)

    Article  CAS  Google Scholar 

  4. J. Hassoun, B. Scrosati, A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49(13), 2371–2374 (2010)

    Article  CAS  Google Scholar 

  5. G. Zhou, D.W. Wang, F. Li, A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li–S batteries. Energy Environ. Sci. 5(10), 8901–8906 (2012)

    Article  CAS  Google Scholar 

  6. H.J. Peng, Q. Zhang, Designing host materials for sulfur cathodes: from physical confinement to surface chemistry. Angew. Chem. Int. Ed. 54(38), 11018–11020 (2015)

    Article  CAS  Google Scholar 

  7. L. Xiao, Y. Cao, J. Xiao, A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium–sulfur batteries with long cycle life. Adv. Mater. 24(9), 1176–1181 (2012)

    Article  CAS  Google Scholar 

  8. M. Yu, J. Ma, H. Song, Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium–sulfur batteries. Energy Environ. Sci. 9(4), 1495–1503 (2016)

    Article  CAS  Google Scholar 

  9. G. Zhou, L. Li, D.W. Wang, A flexible sulfur–graphene–polypropylene separator integrated electrode for advanced Li–S batteries. Adv. Mater. Technol. 27(4), 641–647 (2015)

    CAS  Google Scholar 

  10. R. Singhal, S.H. Chung, A. Manthiram, A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J. Mater. Chem. A 3(8), 4530–4538 (2015)

    Article  CAS  Google Scholar 

  11. L. Suo, Y.S. Hu, H. Li, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481–1481 (2012)

    Article  Google Scholar 

  12. M.L. Gordin, F. Dai, S. Chen, Bis (2, 2, 2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating self-discharge in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 6(11), 8006–8010 (2014)

    Article  CAS  Google Scholar 

  13. W. Xu, J. Wang, F. Ding, Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7(2), 513–537 (2014)

    Article  CAS  Google Scholar 

  14. Z. Lin, Z. Liu, W. Fu, Phosphorous pentasulfide as a novel additive for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 23(8), 1064–1069 (2013)

    Article  CAS  Google Scholar 

  15. M.J. Lacey, F. Jeschull, K. Edström, Functional, water-soluble binders for improved capacity and stability of lithium–sulfur batteries. J. Power Sources 264, 8–14 (2014)

    Article  CAS  Google Scholar 

  16. S.E. Cheon, J.H. Cho, K.S. Ko, Structural factors of sulfur cathodes with poly (ethylene oxide) binder for performance of rechargeable lithium sulfur batteries. J. Electrochem. Soc. 149(11), A1437–A1441 (2002)

    Article  CAS  Google Scholar 

  17. H.B. Zhang, C. Wu, Yuan, Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew. Chem. Int. Ed. 124(38), 9730–9733 (2012)

    Article  Google Scholar 

  18. S. Moon, Y.H. Jung, W.K. Jung, Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv. Mater. 25(45), 6547–6553 (2013)

    Article  CAS  Google Scholar 

  19. Z. Li, H.B. Wu, X.W.D. Lou, Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy Environ. Sci. 9(10), 3061–3070 (2016)

    Article  CAS  Google Scholar 

  20. W. Zhou, X. Xiao, M. Cai, Polydopamine-coated, nitrogen-doped, hollow carbon–sulfur double-layered core–shell structure for improving lithium–sulfur batteries. Nano Lett. 14(9), 5250–5256 (2014)

    Article  CAS  Google Scholar 

  21. Y. Xie, L. Fang, H. Cheng, Biological cell derived N-doped hollow porous carbon microspheres for lithium–sulfur batteries. J. Mater. Chem. A 4(40), 15612–15620 (2016)

    Article  CAS  Google Scholar 

  22. X. Li, Y. Lu, Z. Hou, SnS2-compared to SnO2-stabilized S/C composites toward high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 8(30), 19550–19557 (2016)

    Article  CAS  Google Scholar 

  23. Z.F. Huang, J. Song, K. Li, Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 138(4), 1359–1365 (2016)

    Article  CAS  Google Scholar 

  24. R. Wu, X. Qian, K. Zhou, Porous spinel ZnxCo3−xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8(6), 6297–6303 (2014)

    Article  CAS  Google Scholar 

  25. R. Wu, D.P. Wang, X. Rui, In situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv. Mater. 27(19), 3038–3044 (2015)

    Article  CAS  Google Scholar 

  26. N.L. Torad, R.R. Salunkhe, Y. Li, Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem. Eur. J. 20(26), 7895–7900 (2014)

    Article  CAS  Google Scholar 

  27. Z. Liu, X. Zheng, S. Luo, High performance Li–S battery based on amorphous NiS2 as the host material for the S cathode. J. Mater. Chem. A 4(35), 13395–13399 (2016)

    Article  CAS  Google Scholar 

  28. J. Zhou, N. Lin, W. Long Cai, Synthesis of S/CoS2 nanoparticles-embedded N-doped carbon polyhedrons from polyhedrons ZIF-67 and their properties in lithium–sulfur batteries. Electrochim. Acta 218, 243–251 (2016)

    Article  CAS  Google Scholar 

  29. H. Hu, B.Y. Guan, X.W.D. Lou, Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors. Chem 1(1), 102–113 (2016)

    Article  CAS  Google Scholar 

  30. G.F. Khudorozhko, I.P. Asanov, L.N. Mazalov, The study of electronic structure of molybdenum and tungsten trisulfides and their lithium intercalates by X-ray electron and X-ray emission and absorption spectroscopy. J. Electron Spectrosc. Relat. Phenom. 68, 199–209 (1994)

    Article  CAS  Google Scholar 

  31. T. Lei, W. Chen, J. Huang, Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries. Adv. Energy Mater. 7(4), 1601843–1601847 (2017)

    Article  Google Scholar 

  32. J. Liu, Y. Xing, X. Liu, Hydrothermal synthesis and magnetic properties of nanoplate-assembled hierarchical structured Co1−xS microrods. Mater. Charact. 67, 112–118 (2012)

    Article  CAS  Google Scholar 

  33. Q. Liu, J. Zhang, A general and controllable synthesis of ComSn (Co9S8, Co3S4, and Co1−xS) hierarchical microspheres with homogeneous phases. CrystEngComm 15(25), 5087–5092 (2013)

    Article  CAS  Google Scholar 

  34. X. Gu, C. Lai, F. Liu, A conductive interwoven bamboo carbon fiber membrane for Li–S batteries. J. Mater. Chem. A 3(18), 9502–9509 (2015)

    Article  CAS  Google Scholar 

  35. D.H. Han, B.S. Kim, S.J. Choi, Time-resolved in situ spectroelectrochemical study on reduction of sulfur in N, N′-dimethylformamide. J. Electrochem. Soc. 151(9), E283–E290 (2004)

    Article  CAS  Google Scholar 

  36. Y. Zu, A. Fu, Manthiram, Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes. J. Mater. Chem. A 1(35), 10362–10367 (2013)

    Article  CAS  Google Scholar 

  37. H. Li, X. Yang, X. Wang, Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy 12, 468–475 (2015)

    Article  Google Scholar 

  38. S.Y. Zheng, Y. Wen, Y.J. Zhu, In situ sulfur reduction and intercalation of graphite oxides for Li–S battery cathodes. Adv. Energy Mater. 4, 482–491 (2014)

    Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (No. 52003239), the Science Foundation of Yancheng Institute of Technology (No. xjr2019031), the Science Foundation of Zhejiang Sci-Tech University (ZSTU) (Nos. 11152932612005 and 11150131722006), and Key Research and Development Program of Zhejiang Province (No. 2021C01074).

Author information

Authors and Affiliations

Authors

Contributions

YY: Investigation, Data curation, Validation, Formal analysis, Writing—review and editing. LZ: Conceptualization, Project administration, Writing—review and editing. YY, XG, and ZL: Formal analysis and discussion. SL: Conceptualization, Formal analysis, Supervision, Project administration.

Corresponding author

Correspondence to Shuiping Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1850 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhang, L., Yan, Y. et al. Hollow amorphous CoS to reversible storage sulfur as cathode of Li–S battery. J Mater Sci: Mater Electron 33, 20479–20486 (2022). https://doi.org/10.1007/s10854-022-08862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08862-x

Navigation