Skip to main content
Log in

Carrier distribution characteristics of AlGaN-based ultraviolet light-emitting diodes at elevated temperatures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We studied the electrical and optical properties of 276 nm and 306 nm AlGaN-based ultraviolet light emitting diodes (UV-LEDs) in the temperature range of 303–403 K. Capacitance–voltage measurements were performed to extract the carrier distribution in UV-LED, especially around the multi-quantum well structure. Our results showed that an additional carrier concentration peak close to the first quantum well of the p-n junction was present at elevated temperatures. Our physical simulation 276 nm LEDs revealed the cause of the concentration change to be the higher stress of the barrier layer with the temperature increase which introduced additional piezoelectric charge at the heterostructure interfaces. It is also found that the electron barrier layer (EBL) acceptor concentration decreased with the temperature, which caused a shift in the carrier concentration peak position, corresponding to higher EBL contribution to the increase of depletion width in the UV-LED. Higher temperatures lead to the increase of polarization charge at the quantum barrier/EBL interface, associated with downward bending of the conduction band of the quantum barrier, which is possibly the reason for an additional carrier concentration peak. The variation of the carrier distribution in UV-LED with temperature provides a new perspective and method to explain the UV-LED thermal droop effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article.

References

  1. M.A. Wurtele, T. Kolbe, M. Lipsz, A. Kulberg, M. Weyers, M. Kneissl, M. Jekel, Application of GaN-based ultraviolet-C light emitting diodes–UV LEDs–for water disinfection. Water Res. 45, 1481–1489 (2011)

    Article  CAS  Google Scholar 

  2. A. Endruweit, M.S. Johnson, A.C. Long, Curing of composite components by ultraviolet radiation: a review. Polym. Compos. 27, 119–128 (2006)

    Article  CAS  Google Scholar 

  3. H. Amano, R. Collazo, C.D. Santi, S. Einfeldt, M. Funato, J. Glaab, S. Hagedorn, A. Hirano, H. Hirayama, R. Ishii, Y. Kashima, Y. Kawakami, R. Kirste, M. Kneissl, R. Martin, F. Mehnke, M. Meneghini, A. Ougazzaden, P.J. Parbrook, S. Rajan, P. Reddy, F. Römer, J. Ruschel, B. Sarkar, F. Scholz, L.J. Schowalter, P. Shields, Z. Sitar, L. Sulmoni, T. Wang, T. Wernicke, M. Weyers, B. Witzigmann, Y.-R. Wu, T. Wunderer, Y. Zhang, The 2020 UV emitter roadmap. J. Phys. D: Appl. Phys. 53, 503001 (2020)

    Article  CAS  Google Scholar 

  4. M. Kneissl, T.-Y. Seong, J. Han, H. Amano, The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photon. 13, 233–244 (2019)

    Article  CAS  Google Scholar 

  5. D. Li, K. Jiang, X. Sun, C. Guo, AlGaN photonics: recent advances in materials and ultraviolet devices. Adv. Opt. Photon. 10, 43–110 (2018)

    Article  CAS  Google Scholar 

  6. X.A. Cao, S.F. LeBoeuf, T.E. Stecher, Temperature-dependent electroluminescence of AlGaN-based UV LEDs. IEEE Electron Device Lett. 27, 329–331 (2006)

    Article  CAS  Google Scholar 

  7. N. Nepal, J. Li, M.L. Nakarmi, J.Y. Lin, H.X.J.A.P.L. Jiang, Exciton localization in AlGaN alloys. Appl. Phys. Lett. 88, 7284 (2006)

    Google Scholar 

  8. Y. Iwata, T. Oto, D. Gachet, R.G. Banal, M. Funato, Y. Kawakami, Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells. J. Appl. Phys. 117, 115702 (2015)

    Article  Google Scholar 

  9. N.L. Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, M. Kneissl, Investigation of the temperature dependent efficiency droop in UV LEDs. Semicond. Sci. Technol. 28, 125021 (2013)

    Article  Google Scholar 

  10. C. De Santi, M. Meneghini, D. Monti, J. Glaab, M. Guttmann, J. Rass, S. Einfeldt, F. Mehnke, J. Enslin, T. Wernicke, M. Kneissl, G. Meneghesso, E. Zanoni, Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs. Photon. Res. 5, A44–A51 (2017)

    Article  Google Scholar 

  11. M.H. Kim, M.F. Schubert, D. Qi, J.K. Kim, E.F. Schubert, J. Piprek, Y.J.A.P.L. Park, Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91, 183507 (2007)

    Article  Google Scholar 

  12. X. Ji, J. Yan, Y. Guo, L. Sun, T. Wei, Y. Zhang, J. Wang, F. Yang, J. Li, Tailoring of energy band in electron-blocking structure enhancing the efficiency of AlGaN-based deep ultraviolet light-emitting diodes. IEEE Photon. J. 8, 1–7 (2016)

    Article  Google Scholar 

  13. Z.-H. Zhang, J. Kou, S.-W.H. Chen, H. Shao, J. Che, C. Chu, K. Tian, Y. Zhang, W. Bi, H.-C. Kuo, Increasing the hole energy by grading the alloy composition of the p-type electron blocking layer for very high- performance deep ultraviolet light-emitting diodes. Photon. Res. 7, B1–B6 (2019)

    Article  CAS  Google Scholar 

  14. Simulator of Light Emitters based on Nitride Semiconductors SiLENSe 5.14 (STR Group website. http://www.str-soft.com/learn/InAlGaN_Alloys/index.htm). Accessed 30 Apr 2020

  15. S. Chhajed, J. Cho, E. Schubert, J.K. Kim, D. Koleske, M. Crawford, Temperature-dependent light-output characteristics of GaInN light-emitting diodes with different dislocation densities. Phys. Status Solid A. 208, 947–950 (2011)

    Article  CAS  Google Scholar 

  16. D.S. Meyaard, Q. Shan, D. Qi, J. Cho, E.F. Schubert, M.H. Kim, C.J.A.P.L. Sone, On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes. Appl. Phys. Lett. 99, 041112 (2011)

    Article  Google Scholar 

  17. C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, E. Zanoni, Role of defects in the thermal droop of InGaN-based light emitting diodes. J. Appl. Phys. 119, 094501 (2016)

    Article  Google Scholar 

  18. F. Piva, C. De Santi, M. Deki, M. Kushimoto, H. Amano, H. Tomozawa, N. Shibata, G. Meneghesso, E. Zanoni, M. Meneghini, Modeling the degradation mechanisms of AlGaN-based UV-C LEDs: from injection efficiency to mid-gap state generation. Photon. Res. 8, 1786 (2020)

    Article  CAS  Google Scholar 

  19. Q. Shan, D.S. Meyaard, Q. Dai, J. Cho, E. Fred Schubert, J. Kon Son, C. Sone, Transport-mechanism analysis of the reverse leakage current in GaInN light-emitting diodes. Appl. Phys. Lett. 99, 253506 (2011)

    Article  Google Scholar 

  20. D. Han, C. Oh, H. Kim, J. Shim, K. Kim, D. Shin, Conduction mechanisms of leakage currents in InGaN/GaN-based light-emitting diodes. IEEE Trans. Electron Devices 62, 587–592 (2015)

    CAS  Google Scholar 

  21. D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni, Degradation of UV-A LEDs: physical origin and dependence on stress conditions. IEEE Trans. Device Mater. Reliab. 16, 213–219 (2016)

    Article  CAS  Google Scholar 

  22. M. Mandurrino, G. Verzellesi, M. Goano, M. Vallone, F. Bertazzi, G. Ghione, M. Meneghini, G. Meneghesso, E. Zanoni, Physics-based modeling and experimental implications of trap-assisted tunneling in InGaN/GaN light-emitting diodes. Phys. Status Solidi A. 212, 947–953 (2015)

    Article  CAS  Google Scholar 

  23. C.G. Moe, M.L. Reed, G.A. Garrett, A.V. Sampath, T. Alexander, H. Shen, M. Wraback, Y. Bilenko, M. Shatalov, J. Yang, W. Sun, J. Deng, R. Gaska, Current-induced degradation of high performance deep ultraviolet light emitting diodes. Appl. Phys. Lett. 96, 213512 (2010)

    Article  Google Scholar 

  24. F. Rossi, M. Pavesi, M. Meneghini, G. Salviati, M. Manfredi, G. Meneghesso, A. Castaldini, A. Cavallini, L. Rigutti, U. Strass, U. Zehnder, E. Zanoni, Influence of short-term low current dc aging on the electrical and optical properties of InGaN blue light-emitting diodes. J. Appl. Phys. 99, 053104 (2006)

    Article  Google Scholar 

  25. M.L. Lucia, J.L. Hernandez-Rojas, C. Leon, I.J.E.J.O.P. Mártil, Capacitance measurements of p-n junctions: depletion layer and diffusion capacitance contributions. Eur. J. Phys. 14, 86 (1999)

    Article  Google Scholar 

  26. M. Su, X. Zhu, Q. Guo, Z. Chen, S. Deng, Z. Chen, Y. Wang, J. Deng, W. Sun, Characterization and simulation of 280 nm UV-LED degradation. AIP Adv. 11, 035315 (2021)

    Article  CAS  Google Scholar 

  27. A.J. Chiquito, M.G. de Souza, Temperature dependence of the electron distribution in a GaAs matrix with embedded InAs quantum dots. Physica E 25, 613–618 (2005)

    Article  CAS  Google Scholar 

  28. M. Meneghini, L.-R. Trevisanello, G. Meneghesso, E. Zanoni, A review on the reliability of GaN-based LEDs. IEEE Trans. Device Mater. Reliab. 8, 323–331 (2008)

    Article  CAS  Google Scholar 

  29. J. Krupka, M. Zając, R. Kucharski, D. Gryglewski, Dielectric properties of highly resistive GaN crystals grown by ammonothermal method at microwave frequencies. AIP Adv. 6, 035313 (2016)

    Article  Google Scholar 

  30. C.G. Moe, G.A. Garrett, P. Rotella, H. Shen, M. Wraback, M. Shatalov, W. Sun, J. Deng, X. Hu, Y.J.A.P.L. Bilenko, Impact of temperature-dependent hole injection on low-temperature electroluminescence collapse in ultraviolet light-emitting diodes. Appl. Phys. Lett. 101, 253512 (2012)

    Article  Google Scholar 

  31. K.A. Bulashevich, V.F. Mymrin, S.Y. Karpov, I.A. Zhmakin, A.I. Zhmakin, Simulation of visible and ultra-violet group-III nitride light emitting diodes. J. Comput. Phys. 213, 214–238 (2006)

    Article  CAS  Google Scholar 

  32. A. Rashidi, M. Monavarian, A. Aragon, D. Feezell, Thermal and efficiency droop in InGaN/GaN light-emitting diodes: decoupling multiphysics effects using temperature-dependent RF measurements. Sci Rep 9, 19921 (2019)

    Article  CAS  Google Scholar 

  33. M. Ajmal Khan, E. Matsuura, Y. Kashima, H. Hirayama, Influence of undoped-AlGaN final barrier of MQWs on the performance of lateral-type UVB LEDs. Phys. Status Solidi A. 216, 1900185 (2019)

    Article  Google Scholar 

  34. H. Yu, Z. Ren, H. Zhang, J. Dai, C. Chen, S. Long, H. Sun, Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier. Opt. Express 27, A1544–A1553 (2019)

    Article  CAS  Google Scholar 

  35. M.N. Sharif, M. Usman, M.I. Niass, J.J. Liou, F. Wang, Y. Liu, Compositionally graded AlGaN hole source layer for deep-ultraviolet nanowire light-emitting diode without electron blocking layer. Nanotechnology 33, 075205 (2021)

    Article  Google Scholar 

  36. S. Figge, H. Kröncke, D. Hommel, B.M. Epelbaum, Temperature dependence of the thermal expansion of AlN. Appl. Phys. Lett. 94, 101915 (2009)

    Article  Google Scholar 

  37. C. Roder, S. Einfeldt, S. Figge, D. Hommel, Temperature dependence of the thermal expansion of GaN. Phys. Rev. B 72, 085218 (2005)

    Article  Google Scholar 

  38. F. Römer, B. Witzigmann, Acceptor activation model for III-nitride LEDs. J. Comput. Electron. 14, 456–463 (2015)

    Article  Google Scholar 

Download references

Funding

This work was supported financially by the fund for Bagui Talent of Guangxi Province (Nos. T3120097921 and T3120099202), Talent Model Base (AD19110157), Guangxi Science and Technology Program (AD19245132), Guangxi University Foundation (A3120051010), and Disinfection Robot Based on High Power AlGaN-based UVLEDs (No. BB31200014).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ZC, WS, JD and LW. The first draft of the manuscript was written by ZC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianyu Deng, Lianshan Wang or Wenhong Sun.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Deng, S., Li, M. et al. Carrier distribution characteristics of AlGaN-based ultraviolet light-emitting diodes at elevated temperatures. J Mater Sci: Mater Electron 33, 17395–17403 (2022). https://doi.org/10.1007/s10854-022-08621-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08621-y

Navigation