Skip to main content
Log in

Synthesis and microwave absorption properties of porous vanadium nitride microspheres

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, the unique porous vanadium nitride microspheres as electromagnetic wave absorption materials were prepared via solvothermal and ammonia reduction nitridation using NH4VO3 as raw material. The results show that the vanadium nitride microspheres contain residual oxygen, which facilitates impedance matching and interfacial polarization. Besides that, the vanadium nitride microspheres have irregular surfaces and internal mesopores providing suitable impedance matching, interfacial polarization, multiple reflections and scattering. Hence, the superior absorption properties in the X and Ku band are achieved by adjusting the weight ratio of vanadium nitride microspheres-paraffin. The optimal reflection loss for the sample with 20 wt% vanadium nitride microsphere filler loading was − 51.5 dB (X-band). In addition, the strongest reflection loss (RLmin) is − 54.2 dB (Ku-band) and the EAB is 4.14 GHz at 1.91 mm thickness when the filler loading of vanadium nitride microspheres was 25 wt%. It is demonstrated that the high-absorption performance, light weight, and large bandwidth of porous vanadium nitride microspheres offer a new strategy for transition metal nitride electromagnetic wave absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. L.L. Adebayo, H. Soleimani, B.H. Guan, N. Yahya, A. Öchsner, M. Sabet, J.Y. Yusuf, H. Ali, A simple route to prepare Fe3O4@C microspheres as electromagnetic wave absorbing material. J. Mater. Res. Technol. 12, 1552–1563 (2021). https://doi.org/10.1016/j.jmrt.2021.03.094

    Article  CAS  Google Scholar 

  2. X. Liu, Z. Tang, J. Xue, H. Wei, X. Fan, Y. Liu, L. Cheng, Enhanced microwave absorption properties of polymer-derived SiC/SiCN composite ceramics modified by TiC. J. Mater. Sci.: Mater. Electron. 32(21), 25895–25907 (2021). https://doi.org/10.1007/s10854-020-05193-7

    Article  CAS  Google Scholar 

  3. W. Zhou, L. Long, P. Xiao, Y. Li, H. Luo, W. Hu, R. Yin, Silicon carbide nano-fibers in-situ grown on carbon fibers for enhanced microwave absorption properties. Ceram. Int. 43(7), 5628–5634 (2017). https://doi.org/10.1016/j.ceramint.2017.01.095

    Article  CAS  Google Scholar 

  4. G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). https://doi.org/10.1021/nn304630h

    Article  CAS  Google Scholar 

  5. Y. Liu, D. Zhu, Y. Qing, W. Zhou, F. Luo, Effects of La3+ or Ti4+ doping on dielectric and microwave absorption performance of CaMnO3 in the 8.2–18GHz. J. Mater. Sci.: Mater. Electron. 32(8), 10329–10338 (2021). https://doi.org/10.1007/s10854-021-05688-x

    Article  CAS  Google Scholar 

  6. Y. Zhou, W. Guo, T. Li, A review on transition metal nitrides as electrode materials for supercapacitors. Ceram. Int. 45(17), 21062–21076 (2019). https://doi.org/10.1016/j.ceramint.2019.07.151

    Article  CAS  Google Scholar 

  7. B. Wei, F. Ming, H. Liang, Z. Qi, W. Hu, Z. Wang, All nitride asymmetric supercapacitors of niobium titanium nitride-vanadium nitride. J. Power Sources (2021). https://doi.org/10.1016/j.jpowsour.2020.228842

    Article  Google Scholar 

  8. X. Yuan, R. Wang, S. Huang, A. Sha, S. Guo, Vanadium nitride@carbon nanowires with inner porous structure for high-efficient microwave absorption. Mater. Sci. Eng. B (2021). https://doi.org/10.1016/j.mseb.2021.115156

    Article  Google Scholar 

  9. X. Tong, B. Zhai, X. Gao, Multiple dielectric resonance behaviors and microwave attenuation in vanadium nitride/vanadium sesquioxide nanowires. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156393

    Article  Google Scholar 

  10. X. Yuan, R. Wang, W. Huang, Y. Liu, L. Zhang, L. Kong, S. Guo, Lamellar vanadium nitride nanowires encapsulated in graphene for electromagnetic wave absorption. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.122203

    Article  Google Scholar 

  11. X. Yuan, R. Wang, W. Huang, L. Kong, S. Guo, L. Cheng, Morphology design of Co-electrospinning MnO-VN/C nanofibers for enhancing the microwave absorption performances. ACS Appl. Mater. Interfaces 12(11), 13208–13216 (2020). https://doi.org/10.1021/acsami.9b23310

    Article  CAS  Google Scholar 

  12. D. Lan, Z. Gao, Z. Zhao, G. Wu, K. Kou, H. Wu, Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127313

    Article  Google Scholar 

  13. Y. Wei, Y. Shi, X. Zhang, Z. Jiang, Y. Zhang, L. Zhang, J. Zhang, C. Gong, Electrospinning of lightweight TiN fibers with superior microwave absorption. J. Mater. Sci.: Mater. Electron. 30(15), 14519–14527 (2019). https://doi.org/10.1007/s10854-019-01823-x

    Article  CAS  Google Scholar 

  14. G. Wu, Y. He, H. Zhan, Q.Q. Shi, J.N. Wang, A novel Fe3O4/carbon nanotube composite film with a cratered surface structure for effective microwave absorption. J. Mater. Sci.: Mater. Electron. 31(14), 11508–11519 (2020). https://doi.org/10.1007/s10854-020-03698-9

    Article  CAS  Google Scholar 

  15. H. Zhao, Y. Cheng, Z. Zhang, B. Zhang, C. Pei, F. Fan, G. Ji, Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 173, 501–511 (2021). https://doi.org/10.1016/j.carbon.2020.11.035

    Article  CAS  Google Scholar 

  16. T. Han, R. Luo, G. Cui, L. Wang, Effect of SiC nanowires on the high-temperature microwave absorption properties of SiCf/SiC composites. J. Eur. Ceram. Soc. 39(5), 1743–1756 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.01.018

    Article  CAS  Google Scholar 

  17. X. Zhang, J. Zhu, P. Yin, A. Guo, A. Huang, L. Guo, G. Wang, Tunable high-performance microwave absorption of Co1-xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201800761

    Article  Google Scholar 

  18. H. Xu, Y. Shen, H. Bi, W. Liang, R. Yang, Preparation and microwave absorption properties of Fe3O4 hollow microspheres. Ferroelectrics 435(1), 98–103 (2012). https://doi.org/10.1080/00150193.2012.740366

    Article  CAS  Google Scholar 

  19. J. Zhang, Y. Su, Q. Yu, Z. Luo, H. Zhang, Tuning the impedance matching of microsphere Co for strong broadband absorption. J. Magn. Magn. Mater. (2021). https://doi.org/10.1016/j.jmmm.2020.167720

    Article  Google Scholar 

  20. S. Liu, X. Meng, Z. Wang, Z. Li, K. Yang, Enhancing microwave absorption by constructing core/shell TiN@TiO2 heterostructures through post-oxidation annealing. Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2019.126677

    Article  Google Scholar 

  21. J. Liu, H. Liang, H. Wu, Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Compos. A (2020). https://doi.org/10.1016/j.compositesa.2019.105760

    Article  Google Scholar 

  22. J. Liu, H. Liang, Y. Zhang, G. Wu, H. Wu, Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Compos. B (2019). https://doi.org/10.1016/j.compositesb.2019.107240

    Article  Google Scholar 

  23. H. Wu, J. Liu, H. Liang, D. Zang, Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124743

    Article  Google Scholar 

  24. J. Zou, Z. Wang, M. Yan, H. Bi, Enhanced interfacial polarization relaxation effect on microwave absorption properties of submicron-sized hollow Fe3O4 hemispheres. J. Phys. D (2014). https://doi.org/10.1088/0022-3727/47/27/275001

    Article  Google Scholar 

  25. H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang, H. Wei, L. Zhang, L. Cheng, Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 142, 346–353 (2019). https://doi.org/10.1016/j.carbon.2018.10.056

    Article  CAS  Google Scholar 

  26. C. He, S. Qiu, X. Wang, J. Liu, L. Luan, W. Liu, M. Itoh, K.-I. Machida, Facile synthesis of hollow porous cobalt spheres and their enhanced electromagnetic properties. J. Mater. Chem. A (2012). https://doi.org/10.1039/c2jm33068g

    Article  Google Scholar 

  27. B. Zhu, Y. Cui, D. Lv, K. Xu, Y. Chen, Y. Wei, H. Wei, J. Bu, Synthesis of setaria viridis-like TiN fibers for efficient broadband electromagnetic wave absorption in the whole X and Ku bands. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.147439

    Article  Google Scholar 

  28. D. Zhang, J. Li, Z. Su, S. Hu, H. Li, Y. Yan, Electrospun polyporous VN nanofibers for symmetric all-solid-state supercapacitors. J. Adv. Ceram. 7(3), 246–255 (2018). https://doi.org/10.1007/s40145-018-0276-2

    Article  CAS  Google Scholar 

  29. D. Choi, P.H. Jampani, J.R.P. Jayakody, S.G. Greenbaum, P.N. Kumta, Synthesis, surface chemistry and pseudocapacitance mechanisms of VN nanocrystals derived by a simple two-step halide approach. Mater. Sci. Eng. B 230, 8–19 (2018). https://doi.org/10.1016/j.mseb.2017.12.017

    Article  CAS  Google Scholar 

  30. Y. Liu, L. Liu, L. Kang, F. Ran, Vanadium nitride with surface single specie oxide via vanadium-organic frameworks precursor. J. Power Sources (2020). https://doi.org/10.1016/j.jpowsour.2019.227687

    Article  Google Scholar 

  31. Z. Zhao, Y. Liu, H. Cao, J. Ye, S. Gao, M. Tu, Synthesis of VN nanopowders by thermal nitridation of the precursor and their characterization. J. Alloys Compd. 464(1–2), 75–80 (2008). https://doi.org/10.1016/j.jallcom.2007.09.110

    Article  CAS  Google Scholar 

  32. X. Zhou, H. Chen, D. Shu, C. He, J. Nan, Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material. J. Phys. Chem. Solids 70(2), 495–500 (2009). https://doi.org/10.1016/j.jpcs.2008.12.004

    Article  CAS  Google Scholar 

  33. S. Gnanasekar, Q. Van Le, A. Nirmala Grace, Template-free synthesis of vanadium nitride nanopetals (VNNP) as a high performance counter electrode for dye sensitized solar cells. Sol Energy 213, 145–153 (2021). https://doi.org/10.1016/j.solener.2020.11.022

    Article  CAS  Google Scholar 

  34. X. Zhang, R.M. Kong, H. Du, L. Xia, F. Qu, Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions. Chem. Commun. 54(42), 5323–5325 (2018). https://doi.org/10.1039/c8cc00459e

    Article  CAS  Google Scholar 

  35. H. Kwon, S. Choi, L.T. Thompson, Vanadium nitride catalysts: synthesis and evaluation forn-butane dehydrogenation. J. Catal. 184(1), 236–246 (1999)

    Article  CAS  Google Scholar 

  36. Z. Hou, K. Guo, H. Li, T. Zhai, Facile synthesis and electrochemical properties of nanoflake VN for supercapacitors. CrystEngComm 18(17), 3040–3047 (2016). https://doi.org/10.1039/c6ce00333h

    Article  CAS  Google Scholar 

  37. S.A. Ansari, N. Parveen, H.M. Kotb, A. Alshoaibi, Hydrothermally derived three-dimensional porous hollow double-walled Mn2O3 nanocubes as superior electrode materials for supercapacitor applications. Electrochim. Acta (2020). https://doi.org/10.1016/j.electacta.2020.136783

    Article  Google Scholar 

  38. Y. Liu, T. Cui, T. Wu, Y. Li, G. Tong, Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach. Nanotechnology 27(16), 165707 (2016). https://doi.org/10.1088/0957-4484/27/16/165707

    Article  CAS  Google Scholar 

  39. Y. Wu, F. Ran, Vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers electrode for high-performance supercapacitors. J. Power Sources 344, 1–10 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.095

    Article  CAS  Google Scholar 

  40. Q. Liao, M. He, Y. Zhou, S. Nie, Y. Wang, S. Hu, H. Yang, H. Li, Y. Tong, Highly cuboid-shaped heterobimetallic metal-organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 10(34), 29136–29144 (2018). https://doi.org/10.1021/acsami.8b09093

    Article  CAS  Google Scholar 

  41. H. Wang, H. Ma, The electromagnetic and microwave absorbing properties of MoS2 modified Ti3C2Tx nanocomposites. J. Mater. Sci.: Mater. Electron. 30(16), 15250–15256 (2019). https://doi.org/10.1007/s10854-019-01897-7

    Article  CAS  Google Scholar 

  42. Y. Zhang, Z. Yang, T. Pan, H. Gao, H. Guan, J. Xu, Z. Zhang, Construction of natural fiber/polyaniline core-shell heterostructures with tunable and excellent electromagnetic shielding capability via a facile secondary doping strategy. Compos. A (2020). https://doi.org/10.1016/j.compositesa.2020.105994

    Article  Google Scholar 

  43. D. Zhao, Z. Cui, S. Wang, J. Qin, M. Cao, VN hollow spheres assembled from porous nanosheets for high-performance lithium storage and the oxygen reduction reaction. J. Mater. Chem. A 4(20), 7914–7923 (2016). https://doi.org/10.1039/c6ta01707j

    Article  CAS  Google Scholar 

  44. S. Kang, S. Qiao, Y. Cao, Z. Hu, J. Yu, Y. Wang, J. Zhu, Hyper-cross-linked polymers-derived porous tubular carbon nanofibers@TiO2 toward a wide-band and lightweight microwave absorbent at a low loading content. ACS Appl. Mater. Interfaces 12(41), 46455–46465 (2020). https://doi.org/10.1021/acsami.0c11839

    Article  CAS  Google Scholar 

  45. X. Zhu, Y. Dong, Z. Xiang, L. Cai, F. Pan, X. Zhang, Z. Shi, W. Lu, Morphology-controllable synthesis of polyurethane-derived highly cross-linked 3D networks for multifunctional and efficient electromagnetic wave absorption. Carbon 182, 254–264 (2021). https://doi.org/10.1016/j.carbon.2021.06.028

    Article  CAS  Google Scholar 

  46. Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Metal-organic frameworks derived porous hollow Co/C microcubes with improved synergistic effect for high-efficiency microwave absorption. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.161413

    Article  Google Scholar 

  47. D. Cheng, J. Xu, C. Liu, X. Sun, B. Wang, J. Xiang, F. Wen, High microwave absorption performance of NiS2/rGO nanocomposites with a thin thickness. J. Phys. Chem. Solids (2021). https://doi.org/10.1016/j.jpcs.2021.110222

    Article  Google Scholar 

  48. J. Shen, D. Zhang, C. Han, Y. Wang, G. Zeng, H. Zhang, Three-dimensional flower-like FeCoNi/reduced graphene oxide nanosheets with enhanced impedance matching for high-performance electromagnetic wave absorption. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.160877

    Article  Google Scholar 

  49. J. Xu, X. Qi, C. Luo, J. Qiao, R. Xie, Y. Sun, W. Zhong, Q. Fu, C. Pan, Synthesis and enhanced microwave absorption properties: a strongly hydrogenated TiO2 nanomaterial. Nanotechnology 28(42), 425701 (2017). https://doi.org/10.1088/1361-6528/aa81ba

    Article  CAS  Google Scholar 

  50. S. Yan, C. Cao, J. He, L. He, Z. Qu, Investigation on the electromagnetic and broadband microwave absorption properties of Ti3C2 Mxene/flaky carbonyl iron composites. J. Mater. Sci.: Mater. Electron. 30(7), 6537–6543 (2019). https://doi.org/10.1007/s10854-019-00959-0

    Article  CAS  Google Scholar 

  51. A. Hassan, W. Ding, M.A. Aslam, Y. Bian, Q. Liu, Z. Sheng, Microwave absorption property of coffee waste bio-carbon modified by industrial waste MnFe2O4 particles. J. Mater. Sci. 9(6), 12869–12879 (2020). https://doi.org/10.1016/j.jmrt.2020.09.015

    Article  CAS  Google Scholar 

  52. M. Qin, L. Zhang, H. Wu, Dual-template hydrothermal synthesis of multi-channel porous NiCo2O4 hollow spheres as high-performance electromagnetic wave absorber. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.146132

    Article  Google Scholar 

  53. J. Wang, B. Wang, A. Feng, Z. Jia, G. Wu, Design of morphology-controlled and excellent electromagnetic wave absorption performance of sheet-shaped ZnCo2O4 with a special arrangement. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.155092

    Article  Google Scholar 

  54. J. Zhang, R. Shu, Y. Wu, Z. Wan, X. Li, Facile synthesis of Co0.5Zn0.5Fe2O4 nanoparticles decorated reduced graphene oxide hybrid nanocomposites with enhanced electromagnetic wave absorption properties. Ceram. Int. 46(10), 15925–15934 (2020). https://doi.org/10.1016/j.ceramint.2020.03.141

    Article  CAS  Google Scholar 

  55. X. Yuan, X. Xue, H. Ma, S. Guo, L. Cheng, Preparation of nitrogen and sulfur co-doped ordered mesoporous carbon for enhanced microwave absorption performance. Nanotechnology 28(37), 375705 (2017). https://doi.org/10.1088/1361-6528/aa8008

    Article  CAS  Google Scholar 

  56. H. Zhao, Y. Cheng, W. Liu, Z. Yang, B. Zhang, G. Ji, Y. Du, The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands. Nanotechnology 29(29), 295603 (2018). https://doi.org/10.1088/1361-6528/aac0de

    Article  CAS  Google Scholar 

  57. D. Lan, Z. Zhao, Z. Gao, K. Kou, G. Wu, H. Wu, Porous high entropy alloys for electromagnetic wave absorption. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2020.167065

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (Grant No. 51472072), National Science Foundation of Hebei Province (Grant No. E2021209120).

Funding

The work was supported by National Natural Science Foundation of China (Grant No. 51472072), National Science Foundation of Hebei Province (Grant No. E2021209120).

Author information

Authors and Affiliations

Authors

Contributions

RL: conceptualization, synthesis, performance testing, writing-original draft. CL: synthesis, performance testing, writing—review. FZ: investigation, methodology, synthesis. YC: investigation, synthesis, performance testing. DL: formal analysis, performance testing. YC: methodology, performance testing. YW: resources, formal analysis. HW: Idea and design of this research, Writing—original draft and review and editing. JB: resources, formal analysis.

Corresponding author

Correspondence to Hengyong Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Li, C., Zhang, F. et al. Synthesis and microwave absorption properties of porous vanadium nitride microspheres. J Mater Sci: Mater Electron 33, 17306–17321 (2022). https://doi.org/10.1007/s10854-022-08608-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08608-9

Navigation