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ABSTRACT

In this study, the properties of a series of (Sn0.7-xMo0.3 NdxO2?d) (0.0 B x B 0.3)

Nd3? thin films prepared by sol–gel/spin coating technique were examined.

The XRD analysis revealed the formation of all thin films in the form of Cas-

siterite structure. According to the FTIR investigation, when Nd3? was substi-

tuted for Sn4? ions in the crystal lattice, the absorption peaks migrated to the

lower wavenumber side. This could be related to variations in bond length that

occurs when Sn4? ions in the crystal lattice are replaced with lighter Nd3? ions.

The morphology of the films was examined by using scanning electron micro-

scope (SEM). In terms of Nd content, optical properties such as optical band gap,

refractive index (n), and extinction coefficient (k) were investigated. The mag-

netic characteristics indicated diamagnetic behavior of Sn0.7Mo0.3O2?d, param-

agnetic behavior of Sn0.6Nd0.1Mo0.3O2?d, and ferromagnetic behavior of samples

with a high concentration of Nd, (Sn0.5Nd0.2Mo0.3O2?d, Sn0.4Nd0.3Mo0.3O2?d).

The presence of active Nd3? successfully introduced into the Sn:Mo host matrix

is confirmed by the excitation dependent (PL) observed in the 350–700 nm

range. PL measurements reveal two large bands located at 425 and 466 nm.

1 Introduction

Transparent conducting oxides (TCOs) have received

a lot of attention in recent years due to their high

transmittance in the visible range and outstanding

electrical conductivity [1]. TCOs have been used in a

variety of applications for these reasons, including

photovoltaics, energy-efficient windows [2], electro-

luminescent devices [3], gas sensors [4], electrocatal-

ysis [5], photocatalysis, laser diodes, and light-

emitting diodes (LEDs) [6]. Many materials, such as

ZnO, In2O3-based films, and SnO2-based films, are

transparent conducting oxides. [7]. Tin oxide and

related compounds, in particular, have attracted a lot

of attention because they have natural n-type con-

ductivity with a large band gap of nearly 3.5–4.6 eV,

a stable structure, and the ability to alter electrical

properties based on doping concentration [8, 9].

They also have strong electrical conductivity (10-4S

cm), optical transmittance ([ 85), and electrochemical

stability [10, 11]. However, because of its limited

stability and surface area, SnO2 has some disadvan-

tages. Due to its high exciton binding energy

(130 meV) [12] compared to ZnO (60 meV) [6], SnO2
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nanocrystal is a promising material for short-wave-

length optoelectronic systems and is a feasible can-

didate for UV luminescence devices. The observed

efficient excitonic photoluminescence emissions at

room temperature are due to this high exciton

energy. Due to its exceptional optical, electrical,

electrochemical, and photocatalytic capabilities, SnO2

(Tin oxide), an n-type wide band gap transparent

oxide semiconducting material, has piqued interest in

a variety of applications. Because of its excellent gas

detecting performance and low cost, it is used in gas

sensing. Photocatalytic applications, solar cells,

lithium-ion batteries, optical data storage, gas–dis-

charge displays, flat panel displays, transparent

conducting electrodes, and other applications are all

good candidates for SnO2 [13–15].

However, because of its limited stability and sur-

face area, SnO2 has some disadvantages. However,

because they are highly reactive and have a large

surface area, synthesizing stable nanostructured

materials with the desired properties is difficult. This

results in the formation of secondary phases. As a

result, choosing the right synthesis process is crucial

for achieving the specified restrictions, such as

homogeneity, shape, crystallite size, and so on. To

obtain stable SnO2nanomaterials, Molybdenum tri-

oxide (MoO3) was chosen. Photochromic [16], ther-

mochromic [17], gasochromic [18], and

electrochromic [19] materials and/or devices, various

solar cells as hole transport layer or back contact with

high work function pseudocapacitive as electrode,

photocatalytic system, and organic light-emitting

diodes are just a few of the applications. In addition,

to enhance the optical properties of materials, rare

earth neodymium oxide was used. Rare earth oxides

having one-dimensional structures, such as La2O3,

Sm2O3, Gd2O3, and Nd2O3, have been widely used in

many functional devices due to their unique electri-

cal, optical, magnetic, catalytic, and chemical features

[20]. Nd2O3 has sparked a surge of interest in recent

years, opening up a slew of new possibilities in a

variety of fields. It is one of the most fascinating

oxides in the industrial world because it has been

widely used in a variety of applications such as

ceramic capacitors, ultraviolet absorbents, color tele-

vision tubes, coloring glass, catalyst, and carbon-arc-

light electrodes [21]. Due to its significant luminance

properties, it is used in Nd-layer applications and

Nd3? ions of particular interest for silicon-based solar

cells. The main objective of this study is to synthesize

transparent conductive materials to modulate their

physical properties to be used in spintronics and

optoelectronic applications. The nanosized tin:-

molybdenum oxide films were mainly successfully

prepared via lower cost and temperature sol–gel

technique [22, 23]. Thin films obtained by a sol–gel

technique which has been effectively adapted for

production because of its high throughput, control-

lable thickness, as well as high uniformity, high

purity, lower time preparation, and higher dopant

concentrations. The study includes synthesis of a

series corresponding to this formula oxide (Sn0.7-x-

Mo0.3NdxO2?d) (0.0 B x B 0.3) by sol–gel method, to

enhance its electrical and optical properties of mate-

rials. Another important objective is to use a simple

and low cost method for achieving this target.

2 Experimental work

The nanosized tin:molybdenum oxide (Sn0.7-x-

Mo0.3:NdxO2?d) (0.0 B x B 0.3) thin films were pre-

pared by sol–gel/spin coating technique using tin

nitrate (Sn N4O12, Merck), ammonium dimolybdate

((NH4)2MoO4, Aldrich, 99.89%), and neodymium

nitrate (Nd(NO3)3�6H2O, Merck, 99.9%) as precur-

sors, Ethylene glycol (Aldrich, 99.8%) and diethy-

lamine (Merck, 99.5%) as solvents. For this study,

SnN4O12 and (NH4)2MoO4 were dissolving in ethy-

lene glycol and distilled water (3:1), and the resultant

solution was mixed with 7 ml of diethylamine under

magnetic stirring for 1 h. The resultant solution was

mixed at 50 �C for 1 h until a homogeneous Sn:Mo

sol was achieved. The obtained Sn:Mo sol was kept

for 1 night at 30 �C. Then a required amount of

Nd(NO3)3.6H2O with content (0.1 B x B 0.3) was

dissolved in ethylene glycol and distilled water then

added to the Sn:Mo sol at a constant atomic ratio of

Mo:Sn. The obtained solutions for the doped samples

were then mixed at 50 �C and aged 1 night at 30 �C.
Finally, clean glass substrates were used to deposit

the prepared Sn0.7Mo0.3 O2?d and doped with dif-

ferent Nd ions sols. Then, the prepared sols were

deposited on the substrate through the spin coating

method at 2000 rpm and 20 s for each layer until

reaching the required thickness. The coated sub-

strates were dried at 150 �C for 1 h to evaporate the

residual solvents. Finally, the resulted films were

calcined at 470 �C for 1 h. The sol–gel technique is a

time-effective technique, where the films take 48 h for
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deposited, dried, and thermally treated providing the

combusted films [24].

XRD data of the thin films were collected at

ambient conditions on an Empyrean diffractometer

by Panalytical (Almelo, The Netherlands), and fil-

tered CuKa radiation, tube operated at 30 mA and

45 kV, and using a Ni filter to eliminate Kb. The

crystal structure of the prepared samples was inves-

tigated based on XRD patterns, the scanning range

was 20 to 80 (2h), step scan mode with step size of

0.026 (2h), and counting time of 20 s/step. Instru-

mental broadening was corrected using quartz stan-

dard sample. FTIR studies were carried out with

JASCO 460 PLUS, FTIR spectrometer range from 400

to 2000 cm-1. Morphological properties were studied

by using Scanning electron microscope. Transmit-

tance and reflectance were measured in the wave-

length range 300–1800 nm by using a double-beam

spectrophotometer; JASCO V-570 model. Photolumi-

nescence properties were measured using JASCO

Spectrometer/data system, at the excitation wave-

length 230 nm. The vibrating sample magnetometer

was used to determine the magnetic characteristics.

3 Results and discussion

3.1 XRD analysis

The purity of the prepared films admitted out in

PXRD investigation. Figure 1a demonstrates the

PXRD diffraction pattern of Sn0.7-xMo0.3NdxO2?d,

(0.0 B x B 0.3) respectively; the films are polycrys-

talline in nature, as is observed in the diagram. The

peaks pointed out at 2h = 26.59, 33.38, 37.96, 38.99,

51.79, 54.77, 57.84, 61.90, 64.76, 65.98, 71.30, and 78.73

are indexed with corresponding planar orientations,

(110), (011), (020), (111), (121), (220), (002), (130), (112),

(031), (022), and (231), respectively. These assimilated

into the Cassiterite, tetragonal SnO2 rutile structure.

All existed diffraction peaks perfectly matched with

ICSD card no. 98-3-9175. The absence of any other

phase such as MoO3 or Nd2O3 or impurity peaks

revealed that Mo and Nd dopants properly incorpo-

rated into pure SnO2 lattice sites through the sol–gel

synthesis. The incorporation of Nd into the SnO2

matrix could be confirmed by the shift in the 110 peak

positions. Moreover, with increased Nd doping, the

intensity of the diffraction peaks diminishes, which

may be due to impurities that counteract the growth

of SnO2 as shown in Fig. 1b. The same behavior for

the decrease in the intensity of the diffracted peaks

with the increase of dopant level was obtained before

by Lekshmy et al. [25] during their studies on the

effect of Mn-doped SnO2 thin films prepared by the

Sol–Gel Coating.

The crystallite size was determined using the

Scherrer equation from the most intense peak plane

110 using the following equation:

D ¼ kk=bhkl cos hhkl; ð1Þ

where k is the shape factor, k is the wavelength of X-

Ray, hhkl is the Bragg angle, and bhkl is the corrected

full width at half maximum (FWHM) after subtract-

ing the instrumental broadening. Table 1 shows the

average crystallite size estimated for several samples.

The calculated crystal size for pure and doped sam-

ples is 59 to 41 nm. This means that the presence of

Nd3? ions in SnO2 prevented crystal grains from

growing. The presence of Nd3? ions in the crystal-

lographic structure increases the formation of oxygen

vacancies as required by the charge balance. This

effect is in conjunction with the larger ionic radius of

Nd?3 ion = 1.123 Å in comparison to Sn4? ion =

0.83 Å at six coordinations. This can disturb the long

range crystallographic ordering, and hence, reducing

the crystallite size. On the other hand, the lattice

strain (e) grew with doping, from 0.46% for pure

without Nd doping to 0.523% for 0.3 Nd-doped

samples. Such findings can be explained by the fact

that the incorporation of Nd3? is accompanied with

the generation of lattice defects in SnO2. The defects

increase the lattice strain, and consequently, slow

down the growth of crystallites in the case of doped

sample. The defects increase the lattice strain, and

consequently, slow down the growth of crystallites in

the case of doped sample and hence, reducing the

crystallite size. The dislocation densities of thin films

are given by the Williamson and smallman’s relation

[26, 27]:

d ¼ n=D2; ð2Þ

where D is dislocation density, n is a factor which

equals unity, giving minimum dislocation density,

and D is the crystallite size. It is clear that the dislo-

cation density decreases with the increase in Nd

doping.
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3.2 FTIR study

FTIR is a technique for obtaining information about a

material’s chemical bonds and functional groups.

FTIR spectra of nanosized Sn0.7Mo0.3O2?d film doped

with various contents of Nd ions in the range

1700–400 cm-1 are given in Fig. 2. The given spectra

exhibited some weak and robust absorption peaks,

identified to stretching and bending vibrations in

nanosized pure and doped (Sn0.7-xMo0.3 NdxO2?d)

(0.0 B x B 0.3) films [28, 29]. The two bands at 470

and 603 cm-1 are corresponding to bending and

stretching vibrations of Sn–O–Mo and Sn–O– and the

change in their intensities confirms the introduction

of Nd in Sn:Mo structure and can be denote the

reconstructed of Sn–O–Mo structure. The bands are

located in the range 912 to 600 cm-1 are corre-

sponded to asymmetric stretching modes of Sn–O–,

Mo–O–, O–Mo–O, and O–Sn–O vibrations in Sn:Mo

structure [28, 30]. When Nd3, Mo3 ions replaced into

SnO2 lattice, the absorption peaks moved to lower

wavenumber side. This shifting is most likely due to

Fig. 1 a XRD pattern of

(Sn0.7-xMo0.3: NdxO2?d)

(0.0 B x B 0.3). b (110) peak

shift due to Nd doping

Table 1 Crystallite size, microstrain%, and dislocation density of Sn0.7-xMo0.3:NdxO2?d(0.0 B x B 0.3)

Nd content, x Crystallite size nm Microstrain % Dislocation density

0.0 59 0.46 2.87 9 10–4

0.1 45 0.484 4.93 9 10–4

0.2 41 0.525 5.95 9 10–4

0.3 41 0.523 5.95 9 10–4
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changes in bond length that occur when Sn4? ions in

the crystal lattice are replaced with lighter Nd3? ions.

The same behavior in the shift of the peak position

due to doping was obtained by Inderan et al. [31]

during their studies of Ni-doped SnO2 prepared by

the hydrothermal method. All thin films presented a

dominant band at 1401 cm-1 which corresponds to

the interaction of Sn with hydrogen lined Mo–O, as a

weak acid [32, 33]. The band at 1613 cm-1 appeared

in both nanosized Sn:Mo and doped with Nd films;

the intensity and the shape of the band suggest that it

may correspond to the deformation mode of –OH

stretching vibration, as humidity in the films [34].

From the FTIR spectra it can be obvious that these

peaks 1650–800 cm-1 become stronger with the

increase of Nd ratio in the Sn:Mo structure, which

denotes the absorbing ability of films to –OH

decreases. This might be due to the substitution of Sn

with Nd ions in the Sn:Mo lattice, which supports the

formation of Sn–O– Nd and eliminates –OH groups.

3.3 Morphological properties

Figure 3a, b shows the typical morphology of pure

Sn0.7 Mo0.3O2?d and Sn0.4Mo0.3Nd0.3 O2?d. The SEM

image of both showing microstructure and aggre-

gates of smaller individual nanoparticles, foam-like

structure can be observed. This could be due to

strong interactions between nanoparticles during

calcinations, which are caused by their high surface

energy. The grain distribution estimated from the

SEM (Fig. 3c, d) images for films showed that the

grain size changes from 50 to 500 nm, where the

image region was heavily aggregate as is observed in

Fig. 3a, b.

3.4 Optical properties

The optical properties of all samples were studied in

the wavelength range of 300–1800 nm. Figure 4

shows the optical transmission (T) spectrum of

Sn0.7-xMo0.3NdxO2?d films (0 B x B 0.3). The decre-

ment in transmittance of the films with higher Nd

doping content can be explained by the rise in scat-

tering of photons, due to the larger surface roughness

of the prepared films [35]. The optical absorption

coefficient (a) of Sn0.7-xMo0.3NdxO2?d films with

different Nd concentrations are depicted in Fig. 5.

Absorption coefficient is estimated by the following

Beer–Lambert’s law [36]:

a ¼ ln 1=Tð Þ 1=dð Þ; ð3Þ

where d is the films thickness and T is the transmit-

tance. The thickness of the film without Nd equals

500 nm and the thickness of the films doped with

different Nd contents is 530 nm. It is observed that (a)
increases with increasing Nd content and decreases

with increasing wavelength (k). The direct allowed

energy band gap (Eg) of Sn0.7-x Mo0.3NdxO2?d sam-

ples have been calculated from the correlation

between the incident photon energy (ht) and the

absorption coefficient (a) as is given below [37]:

a hm ¼ A hm � Eg

� �n
: ð4Þ

The band gap energy has been evaluated by

extrapolating the straight line portion of the plot to

the (ht) axis to get the value of optical band gap (Eg)

as is shown in Fig. 6a–d. The results show that when

Nd doping levels rise, the optical band gap widens,

which is consistent with the changes in crystallite

size. In addition to when the degree of doping rises,

the Burstein–Moss effect on band gap broadening, a

well-known quantum confinement phenomena, cau-

ses the band gap to widen by shrinking the crystallite

size [38, 39]. Also, structural disorder in the lattice

may cause changes in the intermediate energy level

distribution inside the band gap, resulting in varia-

tions in Eg values. The band gap is also affected by

the strain caused by the Nd dopant as ensured by

XRD data. The increase in Eg indicates that Sn0.70-

xMo0.3NdxO2?d films could be used in optoelectronic

devices.

Fig. 2 FTIR spectra of a Sn0.7Mo0.3, b Sn0.6Nd0.1Mo0.3O2,

c Sn0.5Nd0.2Mo0.3O2, and d Sn0.4Nd0.3Mo0.3O2 films
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Fig. 3 a SEM image for Sn0.7Mo0.3O2?d, b SEM of Sn0.4Mo0.3Nd0.3 O2?d, c, d The grain distribution of Sn0.7Mo0.3O2?d and

Sn0.4Mo0.3Nd0.3 O2?d
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The extinction coefficient (k) is a ratio that describes

how rapidly the intensity of light diminishes when it

travels through a substance. A detailed examination

of the relationship between k and wavelength reveals

that k rose as both the wavelength and the Nd con-

tent increased as shown in Fig. 7. The refractive index

(n) is an important optical constant that explains the

function of the incident photon in beginning particle

polarization, as (n) is unmistakably influenced by the

material’s packing density and polarization [40, 41].

Also the refractive index (n) is an important param-

eter for optical material and their applications; they

consider it as the main parameter for device design.

The refractive index can be calculated by using these

relations [42]:
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R ¼ ðn� 1Þ2 þ k2

ðnþ 1Þ2 þ k2
; ð5Þ

n ¼ ð1þ RÞ
ð1� RÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R

ð1� RÞ2

s

� k2: ð6Þ

The dependence of the reflectance on the wave-

length is shown in Fig. 8. The relation between the

refractive index and the wavelength is shown in

Fig. 9. It is obvious that raising the Nd content leads

to an increase in n.

3.5 Photoluminescence

The photoluminescence spectra of (a) nanosized

0.7Sn:0.3Mo film doped with various molar ratios of

Nd to Sn (b) 0.2 and (c) 0.3 are illustrated in Fig. 10.

The spectra of 0.7Sn:0.3Mo display major two emis-

sion peaks located at wavelengths of 425 and 466 nm.

Besides, there are two less intense emission bands

located at 562 and 622 nm. These emission peaks are

decreased with the introduction of the Nd element

without any shift in the position of the peaks. By the

increase of Nd ions, the distance between Nd ions

decreases. Owing to this decrease in distances

between Nd ions, the phonons are forced by Nd ions

to exchange energy to the electrons which are close to

Nd ions resulting in the decrease in emission inten-

sity. This phenomenon is known as concentration

quenching. However, the fundamental edge, located

at wavelengths less than 400 nm, is found to show a

slight shift towards higher wavelengths with the

introduction of Nd dopant. 3.6 Magnetic measurements

To probe the magnetic properties of Sn0.7-xNdx-

Mo0.3O2?d, (0.0 B x B 0.3) nanoparticles, room tem-

perature magnetization measurements were

performed on the samples and are shown in Fig. 11a–

c. The magnetization (M) of Sn0.7Mo0.3O2?d sample

shows a negative response to the driving magnetic

field (H) as shown in Fig. 11b. This behavior is

known as a diamagnetic behavior and is released

from the absence of unpaired electrons in 4d10 in the

electronic configuration. The magnetic behavior of

the samples is completely changed by introducing

Nd ions into the structure of the samples, Fig. 11a, c.

The behavior is released from the presence of

unpaired electrons in 4f in the electronic structure of

Nd. Figures 11a and c show that the sample with a

low concentration of Nd, Sn0.6Nd0.1Mo0.3O2?d has a
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paramagnetic behavior, while samples containing a

high concentration of Nd, (Sn0.5Nd0.2Mo0.3O2?d,

Sn0.4Nd0.3Mo0.3O2?d) show a ferromagnetic behavior.

It was an expected behavior due to increasing mag-

netic ions content in the materials leads to increase

the magnetic order in these materials; this behavior is

appeared in increasing the saturation magnetization

in Fig. 11a. The saturation magnetization (Ms) is

increased from 0.723 to 1.0238 (emu/g) with

increasing Nd ions concentration from 0.2 to 0.3. The

obtained magnetic parameters are listed in Table 2.

4 Conclusion

The series of (Sn0.7-xMo0.3:NdxO2?d) (0.0 B x B 0.3)

Nd3? thin films were prepared by sol–gel/spin

coating technique at 470 �C for 1 h. Thin films were

examined by XRD, to insure its phase formation. XRD

analysis revealed the formation of all thin films in the

form of Cassiterite, tetragonal SnO2 rutile structure,

the crystallite size, and microstrain and dislocation

densities were also determined from the XRD pat-

terns. It was found that the crystallite size decreases

with the increase in Nd doping and it was in the

nanometer range, moreover both the microstrain and

dislocation density grow with increasing Nd doping.

The FTIR analysis defined the bands of the thin films.

Fig. 11 Magnetic hysteresis loop

Table 2 Magnetic parameters, saturation magnetization (Ms),

coercivity (Hc), remanent magnetization (Mr)

Sample Ms(emu/g) Mr(emu/g) Hc(G)

Mo0.3 O2?d Sn0.7
– – –

Sn0.6 Mo0.3Nd0.1O2?d
– – –

Sn0.5 Mo0.3Nd0.2O2?d 0.723 0.125 127.48

Sn0.4 Mo0.3Nd0.3O2?d 1.0238 0.189 127.07
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The morphology of the thin film studied by scanning

electron microscope shows aggregates of smaller

individual nanoparticles, foam-like structure. The

energy band gaps (Eg) are estimated by using the

optical data. It was found that Eg increases with the

increase in the Nd content. Moreover, the calculated

extinction coefficient (k) was increased as both the

wavelength and the Nd content increased. The

refractive index (n) was found to increase with

increasing the Nd content. The photoluminescence

spectra of Sn0.7 Mo0.3 display major two emission

peaks located at wavelengths of 425 and 466 nm.

Besides, there are two less intense emission bands

located at 562 and 622 nm. These emission peaks are

decreased with the introduction of the Nd element

without any shift in the position of the peaks. By the

increase of Nd ions, the distance between Nd ions

decreases. Magnetic measurements with a Vibrating

Sample Magnetometer (VSM) unit reveal hysteresis

loops in samples with high Nd content (Sn0.5Nd0.2-

Mo0.3O2?d, Sn0.4Nd0.3Mo0.3O2?d) that lead to ferro-

magnetic behavior. From examining the obtained

optical results it is obvious that the increase in the

energy band gap with Nd addition enables us to use

it in the optoelectronic applications.
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