Correction

Correction to: Lattice relaxation effect in $Rb_xMA_{(1-x)}PbBr_3$ single crystal to enhance optoelectronic performance of perovskite photodetectors

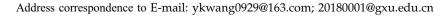
Xin Qiu¹, Lei Li¹, Guoxin Li¹, Lixiang Huang¹, Yukun Wang^{1,*}, and W. H. Sun^{1,2,*}

Published online:

9 February 2022

© Springer Science+Business Media, LLC, part of Springer Nature 2022

Correction to:


J Mater Sci: Mater Electron (2022) https://doi.org/10.1007/s10854-021-07396-y

Address correspondence to E-mail: ykwang0929@ 163.com (Y. Wang); 20180001@gxu.edu.cn (W. Sun) In the original version of this article, the co-corresponding author information for Dr. Yukun Wang

(ykwang0929@163.com) was missed to incorporate. This has been corrected by publishing this correction article. The original article has been corrected.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article can be found online at https://doi.org/10.1007/s10854-021-07396-y.

¹Research Center for Optoelectronic Materials and Devices, School of Physical Science and Technology, Guangxi University, Nanning 530004, China

² Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China