Skip to main content

Advertisement

Log in

Synthesis of different morphologies of ZnO via hydrothermal method for enhanced photocatalytic degradation of wastewater

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The degradation of organic pollutants in water has become a research hotspot in the environmental field. Development of photocatalysts with enhanced photocatalytic activity is of great concern for environmental and energy applications. Herein, different morphologies of ZnO with enhanced photocatalytic activity was synthesized by a facile hydrothermal method with the assistance of ethylene glycol (EG). EG is a key factor for the preparation of structures of ZnO materials. The volume ratio of EG to H2O also plays an important role on the morphology control of ZnO and different proportions have significantly different effects on the morphologies and performances. The obtained photocatalysts were characterized by X-ray powder diffraction, scanning electron microscopy, Brunauer, Emmett and Teller specific surface area (BET), nitrogen adsorption–desorption isotherm and Barrett-Joyner-Halenda pore diameter distribution, UV–Vis diffuse reflectance spectroscopy, photoluminescence spectroscopy and fluorescence lifetime spectroscopy, respectively. The photocatalytic activity of the photocatalyst was evaluated using Rhodamine B as a target pollutant. When the volume ratio of EG to H2O is 6:9, it is found that ZnO with the flower clusters like, average dimensions of 5.25 μm, crystalline size of 46.3 nm and BET-specific surface area of 91.0 m2/g, which photocatalytic efficiency is much higher than other samples, and the degradation rate of RhB reaches to 94.1%, photocatalytic rate is 0.015 min−1. The quantum yield of the photocatalytic reaction is 7.5%. This work could provide a facile way to fabricate the photocatalysts and has great potential in environmental remediation with efficient photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. D. Toloman, A. Popa, M. Stan, M. Stefan, O. Pana, J. Alloys Compds. 866, 159010 (2021)

    Article  CAS  Google Scholar 

  2. A. Barnasas, M.V. Karavasilis, C. Aggelopoulos, C.D. Tsakiroglou, P. Poulopoulos, J. Nano Res. 62, 75–86 (2020)

    Article  CAS  Google Scholar 

  3. S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, H. Xiao, M. Liu, J. Sun, J. Sun, RSC Adv. 5, 14610–14630 (2015)

    Article  CAS  Google Scholar 

  4. B. Gsa, B. Aka, B. Ss, C. Mn, D. Pd, E. Dvnv, A. Fjs, Mater. Lett. 278, 128359 (2020)

    Article  Google Scholar 

  5. Q. Chen, B. Jing, J. Li, H. Ke, X. Li, B. Zhou, W. Cai, Chem. Eng. J. 252, 89–94 (2014)

    Article  CAS  Google Scholar 

  6. A. Fujishima, K. Honda, Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  7. F.A. Fouad, M.A. Ahmed, M.S. Antonious, M.F. Abdel-Messih, J Mater. Sci. Mater. Electron. 31, 12355–12371 (2020)

    Article  CAS  Google Scholar 

  8. A. Ismail, M.J. Abdullah, M.A. Qaeed, M.A. Khamis, W.A. Farooq, J. King Saud Univ. Sci. 33, 101229 (2021)

    Article  Google Scholar 

  9. Shanshan, Xiao, Li, Liu, Jianshe, Lian J, Mater. Sci.: Mater. Electron. 25, 5518-5523 (2014)

  10. M.A. Lahmer, Appl. Surf. Sci. 457, 315–322 (2018)

    Article  CAS  Google Scholar 

  11. P. Dhamodharan, J. Chen, C. Manoharan, J. Mater. Sci. Mater. Electron. 32, 13418–13429 (2021)

    Article  CAS  Google Scholar 

  12. Weilai, Zhang, Jinfeng, Peng, Tianyou, Appl. Catal., B. 181, 220-227 (2016)

  13. M. Islam, A.K. Srivastava, B.M. Basavaraja, A. Sharma, Sens. Int. 2, 100084 (2021)

    Article  Google Scholar 

  14. S.K. Kansal, M. Singh, D. Sud, J. Hazard. Mater. 141, 581–590 (2007)

    Article  CAS  Google Scholar 

  15. N.H. Erdogana, T. Kutlub, N. Sedefogluc, H. Kavakb, J. Alloys Compds. 881, 160554 (2021)

    Article  Google Scholar 

  16. A.M. Palve, S.S. Garje, Semicond. Sci. Technol. 36, 025007 (2021)

    Article  CAS  Google Scholar 

  17. G.P. Singh, M.K. Roy, Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2021.02.741

    Article  Google Scholar 

  18. F. Wang, Y. Zhou, X. Pan, B. Lu, Z. Ye, Phys. Chem. Chem. Phys. 20, 6959–6969 (2018)

    Article  CAS  Google Scholar 

  19. W. Si, L. Pei, Micro Nano Lett. 15, 751–754 (2020)

    Article  CAS  Google Scholar 

  20. S. Sathiya, J. Vijayapriya, K. Parasuraman, D.B. Anburaj, S.J. Gnanamuthu, G. Nedunchezian, J. Metastable, Nanocryst. Mater. 32, 33–43 (2021)

    Google Scholar 

  21. M.Z. Mobaraki, A. Haghighatzadeh, Bull. Mater. Sci. 43, 1–11 (2020)

    Article  Google Scholar 

  22. Y.N. Wang, J. Li, Opt. Mater. 108, 110203 (2020)

    Article  CAS  Google Scholar 

  23. M.N. Rumyantseva, S.A. Vladimirova, V.B. Platonov, A.S. Chizhov, M. Batuk, J. Hadermann, N.O. Khmelevsky, A.M. Gaskov, Sens. Actuators B. 307, 127624 (2021)

    Article  Google Scholar 

  24. Z. Wu, L. Wang, Mater. Lett. 234, 287–290 (2019)

    Article  CAS  Google Scholar 

  25. H. Wen, H.V. Ngoc, D.J. Kang, J. Photochem. Photobiol. A. 356, 212–218 (2018)

    Article  Google Scholar 

  26. J.M. Jang, S.D. Kim, H.M. Choi, J.Y. Kim, W.G. Jung, Mater. Chem. Phys. 113, 389–394 (2009)

    Article  CAS  Google Scholar 

  27. I. Boukhoubza, M. Khenfouch, L. Leontie, M. Achehboune, A. Jorio, Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2021.04.634

    Article  Google Scholar 

  28. H. Li, S. Jiao, S. Bai, H. Li, S. Gao, J. Wang, Q. Yu, F. Guo, L. Zhao, Phys. Status Solidi A. 211, 595–600 (2014)

    Article  CAS  Google Scholar 

  29. M. Kamruzzaman, J.A. Zapien, Crystallogr. Rep. 63, 456–471 (2018)

    Article  CAS  Google Scholar 

  30. P. Scherrer, Nachr. Ges. Wiss. Göttingen. 26, 98 (1918)

    Google Scholar 

  31. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  32. M.N. Ghazzal, N. Barthen, N. Chaoui, Appl. Catal. B. 103, 85–90 (2012)

    Article  Google Scholar 

  33. F. Sun, X. Qiao, F. Tan, W. Wang, X. Qiu, Appl. Surf. Sci. 263, 704–711 (2012)

    Article  CAS  Google Scholar 

  34. R. Singh, K. Verma, A. Patyal, I. Sharma, P.B. Barman, D. Sharma, Solid State Sci. 89, 1–14 (2019)

    Article  CAS  Google Scholar 

  35. M. Taheri, H. Abdizadeh, M.R. Golobostanfard, J. Alloys Compd. 725, 291–301 (2017)

    Article  CAS  Google Scholar 

  36. S. Zarezadeh, A. Habibi-Yangjeh, M. Mousavi, S. Ghosh, J. Photochem. Photobiol. A. 389, 112247 (2019)

    Article  Google Scholar 

  37. Tongguang, Xu, Liwu, Zhang, Hanyun, Cheng, Yongfa, Appl. Catal., B. 101, 382–387 (2011)

  38. Y. Zhang, J. Xu, P. Xu, Y. Zhu, W. Yu, Nanotechnol. 21, 285501 (2010)

    Article  Google Scholar 

  39. Y. Chen, D. Zeng, K. Zhang, A. Lu, L. Wang, D.L. Peng, Nanoscale 6, 1–9 (2013)

    CAS  Google Scholar 

  40. A. Saljooqi, T. Shamspur, A. Mostafavi, Environ. Sci. Pollut. Res. 28, 9146–9156 (2020)

    Article  Google Scholar 

  41. K.S. Al-Namshah, S.M. Mariappan, M. Shkir, M.S. Hamdy, Appl. Phys. A. 127, 1–10 (2021)

    Article  Google Scholar 

  42. K. Qi, B. Cheng, J. Yu, W. Ho, J. Alloys Compds. 727, 792–820 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Grant Nos. 2412021QD008), the Industrial Technology Research and Development Projects of Jilin Province (No.2019C059), Research and Development Project of Ministry of Housing and Urban-Rural Development (2019-K-050)and the Science and Technology Development Project of Jilin Province (No. 20180520217JH).

Author information

Authors and Affiliations

Authors

Contributions

Investigation, data curation, formal analysis and writing-original draft (MZ); supervision [GG]; Writing-review (FB); conceptualization (LW].

Corresponding authors

Correspondence to Guangqing Gai, Fei Bi or Liyan Wang.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Gai, G., Bi, F. et al. Synthesis of different morphologies of ZnO via hydrothermal method for enhanced photocatalytic degradation of wastewater. J Mater Sci: Mater Electron 33, 4523–4534 (2022). https://doi.org/10.1007/s10854-021-07642-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07642-3

Navigation