Skip to main content
Log in

Dependence of β-Co(OH)2/ZnO heterostructural composite prepared by one-pot hydrothermal method on visible-light-driven photocatalytic degradation of organic dye

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A β-Co(OH)2/ZnO heterostructural composite was successfully prepared via a simple one-pot hydrothermal method. The β-Co(OH)2/ZnO heterostructural composite was utilized as the photocatalyst in the photocatalytic degradation of aqueous methylene blue (MB) solution under visible light irradiation. The calcined β-Co(OH)2/ZnO heterostructural composite was characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES), Brunauer–Emmett–Teller (BET) analysis, UV–Vis diffused reflectance spectroscopy (UV–Vis DRS), and photoluminescence (PL) spectroscopy. In the absence of β-Co(OH)2, ZnO particles formed as nanoplatelets but in the composite, they formed as nanorods, and in response to increased Co2+ ion concentration, as flower-like structures. The particle shape of β-Co(OH)2 did not alter. The optical band gap energy of ZnO powder prepared without β-Co(OH)2 was 3.220 eV, and Urbach energy was 0.0712 eV. In 10 mol%β-Co(OH)2/ZnO composite, the optical band gap energy decreased to 2.775 eV and Urbach energy increased to 0.542 eV. Under visible light irradiation, the highest photocatalytic degradation of aqueous MB solution (93.69%) was obtained on a 10 mol%β-Co(OH)2/ZnO heterostructural composite photocatalyst, which also exhibited excellent stability and reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, e126501 (2019)

    Google Scholar 

  2. C.T. Altaf, M. Faraji, A. Kumtepe, N. Abdullayeva, N. Yilmaz, E. Karagoz, A. Bozbey, H. Kurt, M. Sankir, N.D. Sankir, J. Alloys Compd. 828, e154472 (2020)

    Google Scholar 

  3. B. Sundarakannan, M. Kottaisamy, J. Solid State Chem. 293, e121739 (2021)

    Google Scholar 

  4. S. Ahmad, H. Abbas, M.B. Khan, V. Nagal, A.K. Hafiz, Z.H. Khan, Sol. Energy. 216, 164 (2021)

    CAS  Google Scholar 

  5. Z. Rafiee, A. Mosahebfard, M.H. Sheikhi, Mater. Sci. Semicond. Process. 115, e105116 (2020)

    Google Scholar 

  6. C.P. Gupta, A.M. Singh, P.K. Jain, S.K. Sharma, S. Birla, S. Sancheti, Mater. Sci. Semicond. Process. 128, e105734 (2021)

    Google Scholar 

  7. J.C. García-Mesa, P. Montoro-Leal, A. Rodríguez-Moreno, M.M. Lopez Guerrero, E.I. Vereda Alonso, 2021 Talanta 223: e121795

  8. J. Radwan-Praglowska, Ł Janus, M. Piątkowski, A. Sierakowska, D. Matysek, Colloids Surf. B 194, e111170 (2020)

    Google Scholar 

  9. X. Li, Z. Ren, R. Wang, L. Liu, J. Zhang, F. Ma, Md. Zaved Hossain Khan, D. Zhao, X. Liu, 2021 Food Chem. 349: e129208

  10. H. Wu, Z. Zheng, Y. Tang, N.M. Huang, R. Amal, H.N. Lim, Y.H. Ng, Sustain Mater. Technol. (2018). https://doi.org/10.1016/j.susmat.2018.e00075

    Article  Google Scholar 

  11. S. Goktas, A. Goktas, J. Alloys Compd. 863, e158734 (2021)

    Google Scholar 

  12. B.K. Das, T. Das, K. Parashar, S.K.S. Parashar, R. Kumar, H.K. Choudhary, V.B. Khopkar, A.V. Anupama, B. Sahoo, Mater. Chem. Phys. 221, 419 (2019)

    CAS  Google Scholar 

  13. A.N.E. Chergui, C. Pflitsch, B. Atakan, Surf. Interfaces. 22, e100883 (2021)

    Google Scholar 

  14. P. Shunmuga Sundaram, T. Sangeetha, S. Rajakarthihan, R. Vijayalaksmi, A. Elangovan, G. Arivazhagan, 2020 Physica B 595: e142342

  15. S. Castro-Lopes, Y. Guerra, A. Silva-Sousa, D.M. Oliverira, L.A.P. Gonçalves, A. Franco, E. Padrón-Hernández, R. Peña-Garcia, Solid State Sci. 109, e106438 (2020)

    Google Scholar 

  16. S.D. Senol, E. Ozugurlu, L. Arda, Ceram. Int. 46, 7001 (2020)

    Google Scholar 

  17. L. Raza, Y. Febrianti, S. Iwan, V. Fauzia, Surf. Interfaces. 18, e100435 (2020)

    Google Scholar 

  18. L.N. Demyanets, V.I. Lyutin, J. Cryst. Growth. 310, e993 (2008)

    Google Scholar 

  19. J. Rosowaska, J. Kaszewski, B. Witkowski, Ł Wachnicki, I. kuryliszyn-Kudeska, M. Godlewski, Opt. Mater. 109, e100089 (2020)

    Google Scholar 

  20. V. Katheresan, J. Kansedo, S.Y. Lau, J. Environ. Chem. Eng. 6, 4676 (2018)

    CAS  Google Scholar 

  21. K. Grace Pavithra, P. Senthil Kumar, V. Jaikumar, P. Sundar Rajan, 2019 J. Ind. Eng. Chem. 75: e1

  22. G.K. Weldegebrieal, Inorg. Chem. Commun. 120, e108140 (2020)

    Google Scholar 

  23. S. Suwanboon, W. Somraksa, P. Amornpitoksuk, C. Randorn, J. Alloys Compd. 832, e154963 (2020)

    Google Scholar 

  24. I. Ahmad, M.S. Akhtar, M.F. Manzoor, M. Wajid, M. Noman, E. Ahmed, M. Ahmed, W.Q. Khan, A.M. Raana, J. Rare Earths. 39, 440 (2021)

    CAS  Google Scholar 

  25. B. Shirdel, M.A. behnajady, 2020 J. Mol. Liq. 315: e113633

  26. M. Goswami, Opt. Mater. 109, e110400 (2020)

    Google Scholar 

  27. I.N. Reddy, Ch.V. Reddy, M. Sreedhar, J. Shim, M. Cho, D. Kim, Mater. Sci. Eng. B. 240, e33 (2019)

    Google Scholar 

  28. S. Selvaraj, M.K. Mohan, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, Mater. Sci. Semicond. Process. 103, e104622 (2019)

    Google Scholar 

  29. Y. Yu, B. Yao, Y. He, B. Cao, W. Ma, L. Chang, Mater. Chem. Phys. 244, e122672 (2020)

    Google Scholar 

  30. M. Suresh, A. Sivasamy, J. Mol. Liq. 317, e114112 (2020)

    Google Scholar 

  31. M. Yarahmadi, H. Maleki-Ghaleh, M.E. Mehr, Z. Dargahi, F. Rasouli, M.H. Siadati, J. Alloys Compd. 853, e157000 (2021)

    Google Scholar 

  32. H. Liu, Y. Hu, Z. Zhang, X. Liu, H. Jia, B. Xu, Appl. Surf. Sci. 355, 644 (2015)

    CAS  Google Scholar 

  33. Z. Peng, Y. Li, W. Wang, X. Li, X. Lv, X. Chen, Y. Shi, S. Zhou, Mater. Sci. Semicond. Process. 123, e105560 (2021)

    Google Scholar 

  34. K. Phongarthit, P. Amornpitoksuk, S. Suwanboon, Optik 204, e164224 (2020)

    Google Scholar 

  35. I. Benyamina, K. Manseri, M. Mansour, B. Benalioua, A. Bentouami, B. Boury, Appl. Surf. Sci. 483, 859 (2019)

    CAS  Google Scholar 

  36. J. Cheng, Y. Shen, K. Chen, X. Wang, Y. Guo, X. Zhou, R. Bai, Chin. J. Catal. 39, 810 (2018)

    CAS  Google Scholar 

  37. L. Yang, C. Xu, F. Wan, H. He, H. He, H. Gu, J. Xiong, Mater. Res. Bull. 112, 154 (2019)

    CAS  Google Scholar 

  38. A. Mathialagan, M. Manavalan, K. Venkatachalam, F. Mohammad, W.C. Oh, S. Sagadevan, Opt. Mater. 100, e109643 (2020)

    Google Scholar 

  39. X. Cai, Y. Cai, Y. Liu, S. Deng, Y. Wang, Y. Wang, I. Djerdj, Ceram. Int. 40, 57 (2014)

    CAS  Google Scholar 

  40. H. Wender, R.V. Gonçalves, C.S.B. Dias, M.J.M. Zapata, L.F. Zagonel, E.C. Mendonça, S.R. Teixeira, F. Garcia, Nanoscale (2013). https://doi.org/10.1039/c3nr02195e

    Article  Google Scholar 

  41. H. Dand, X. Dong, Y. Dong, H. Fan, Y. Qiu, Mater. Lett. 138, 56 (2015)

    Google Scholar 

  42. T. Hu, W. Wang, D. Han, W. Dong, AIP Adv. 9, e025314 (2019)

    Google Scholar 

  43. N. Akram, J. Guo, W. Ma, Y. Guo, A. Hassan, J. Wang, Sci. Rep. 10, 1 (2020)

    Google Scholar 

  44. M. Ritika, A. Kaur, S.K. Umar, S. Mehta, S.K. Singh, H. Kansal, O.Y. Fouad, Alothman. Materials. 11, 2254 (2018)

    Google Scholar 

  45. M.A. Ahmed, N. Al-Zaqri, A. Alsalme, A.H. Glal, M. Esa, J. Mater. Sci: Mater. Electron. 31, 19188 (2020)

    Google Scholar 

  46. M.A. Mousa, M. Khairy, 2020 Text. Res. J. Doi: 101177/0040517520920952

  47. T. Krishnakumar, R. Jayaprakash, D. Sathiyaraj, N. Donato, M. Latino, G. Neri, Sci. Adv. Mater. 2, 1947 (2010)

    Google Scholar 

  48. M.S. Vidhya, G. Ravi, R. Yuvakkumar, D. Velauthapillai, M. Thambidurai, C. Dang, B. Saravanakumar, RSC Adv. 10, 1 (2020)

    Google Scholar 

  49. S. Suwanboon, P. Amornpitoksuk, T. Rattana, C. Randorn, Ceram. Int. 46, 21958 (2020)

    CAS  Google Scholar 

  50. J. Wang, Y. Bao, C. Cui, Z. Zhang, S. Li, J. Pan, Y. Zhang, G. Tu, J. Wang, Z. Li, J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-019-03421-y

    Article  Google Scholar 

  51. M.J. Zhao, Z.T. Sun, Z.X. Zhang, X.P. Geng, W.Y. Wu, S.Y. Lien, W.Z. Zhu, Materials. 13, 3910 (2020)

    CAS  Google Scholar 

  52. Y. Xiong, W. Liu, X. Qiao, X. Song, S. Wang, X. Zhang, X. Wang, J. Tian, Sens., Actuators, B. 346, e130486 (2021)

    Google Scholar 

  53. A. Roy, H.S. Jadhav, G.M. Thorat, J.G. Seo, New J. Chem. 41, 9546 (2017)

    CAS  Google Scholar 

  54. W. Gong, M. Wang, Y. An, J. Wang, L. Zhou, Y. Xia, C. Wang, K. Dong, C. Pan, R. Zhou, J. Energy Storage. 38, e102579 (2021)

    Google Scholar 

  55. M. Ramani, S. Ponnusamy, C. Muthamizhchelvan, J. Cullen, S. Krishnamurthy, E. Marsili, Colloids Surf. 105, e24 (2013)

    Google Scholar 

  56. Y. Bao, L. Gao, C. Feng, J. Ma, W. Zhang, C. Liu, D. Simion, Adv. Powder Technol. 31, 1975 (2020)

    CAS  Google Scholar 

  57. G.C.J. Swarnavalli, S. Dinakaran, S. Krishnaveni, G.M. Bhalerao, Mater. Sci. Eng. 247, e114376 (2019)

    Google Scholar 

  58. S. Hussain, T. Liu, A. Aslam, M. Kashif, S. Cao, M. Rashad, Y. Zhang, W. Zeng, M.S. Javed, Mater. Lett. 152, 260 (2015)

    CAS  Google Scholar 

  59. K. Deori, S. Deka, CrystEngComm 15, 8465 (2013)

    CAS  Google Scholar 

  60. R. Shokrani-Havigh, Y. Azizian-Kalandaragh, J. Optoelectron. Adv. Mater. 19, 283 (2017)

    CAS  Google Scholar 

  61. K. Punia, G. Lal, S.N. Dolia, S. Kumar, Ceram. Int. 46, 12296 (2020)

    CAS  Google Scholar 

  62. P. Norouzzadeh, Kh. Mabhouti, M.M. Golzan, R. Naderali, Optik 204, e164227 (2020)

    Google Scholar 

  63. G.P. Singh, A.K. Aman, R.K. Singh, M.K. Roy, Optik 203, e163966 (2020)

    Google Scholar 

  64. M. Bian, H. Zhang, J. Zhang, Z. Li, Optik 209, e164607 (2020)

    Google Scholar 

  65. D.C. Mayo, J.R. Nolen, A. Cook, R.R. Mu, R.F. Haglund, Proc. SPIE. 9737, 97370I-I97371 (2016)

    Google Scholar 

  66. R. Raji, K.G. 2017 J. Sci.-Adv. Mater. Dev. 2: e51

  67. A. Mayoufi, M.F. Nsib, O. Ahmed, M. Houas, C.R. 2015 Chim. 18: e875

  68. Q. Zhang, M. Xu, B. You, Q. Zhang, H. Yuan, K. Ostrikov, Appl. Sci. 8, 353 (2018)

    Google Scholar 

  69. J. Liqiang, Y. Fulong, H. Haige, X. Baifu, C. Weimin, F. Honggang, 2005 Sci. China, Ser. B Chem. 48: e25

Download references

Acknowledgements

This research work was partially funded by Faculty of Science Research Fund (2020) under the contract number SCI663001. This research work was partially supported by Chiang Mai University. All authors would like to thank Mr. Thomas Duncan Coyne for assistance with the English text.

Funding

This research was funded by Faculty of Science Research Fund (2020) under the contract number SCI663001. Faculty of Science Research Fund,SCI663001,Sumetha Suwanboon,2020,Sumetha Suwanboon

Author information

Authors and Affiliations

Authors

Contributions

Sumetha Suwanboon: Conception and design of study, Acquisition of data, Analysis and interpretation of data, Drafting the manuscript. Pongsaton Amornpitoksuk: Acquisition of data, Analysis of data. Chamnan Randorn: Analysis of data. Tanattha Rattana: Acquisition of data, Analysis of data.

Corresponding author

Correspondence to Sumetha Suwanboon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suwanboon, S., Amornpitoksuk, P., Randorn, C. et al. Dependence of β-Co(OH)2/ZnO heterostructural composite prepared by one-pot hydrothermal method on visible-light-driven photocatalytic degradation of organic dye. J Mater Sci: Mater Electron 33, 1245–1262 (2022). https://doi.org/10.1007/s10854-021-07418-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07418-9

Navigation