Skip to main content
Log in

Effect of homogeneous coating on K+-doped NaGdF4:Er3+,Yb3+ upconversion materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The K+-doped (Na1−xKx)GdF4:Er3+,Yb3+ upconversion materials were successfully synthesized by solvothermal method. The doping of K+ was testified to have great influences on improving upconversion properties as it directly affects the morphology of the material matrix. In addition, by coating the doped material with a homogeneous shell layer, a newly developed core–shell (Na0.9K0.1)GdF4:Er3+,Yb3+@NaGdF4 nanomaterials were produced. Surprisingly, its light emission intensity was 2 times of that for the uncoated material, although the crystal structure and the emission color of the nanoparticles did not change. The upconversion mechanism has also been studied, and the results show that there is a two-photon mechanism of (Na1−x Kx)GdF4:Er3+,Yb3+. The work provides a new strategy for enhancing the luminescence density of upconversion materials by coating a homogeneous shell after doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. D.H. Choi, D.H. Kang, S.S. Yi, K. Jang, J.H. Jeong, Up-conversion luminescent properties of La(0.80−x)VO4:Ybx, Er0.20 phosphors. Mater. Res. Bull. 71, 16–20 (2015)

    CAS  Google Scholar 

  2. Q.Q. Dou, H.C. Guo, E. Ye, Near-infrared upconversion nanoparticles for bio-applications. Mater. Sci. Eng. C 45, 635–643 (2014)

    CAS  Google Scholar 

  3. Y. Hu, X. Liang, Y. Wang, E. Liu, X. Hu, J. Fan, Enhancement of the red upconversion luminescence in NaYF4:Yb3+, Er3+ nanoparticles by the transition metal ions doping. Ceram. Int. 41, 14545–14553 (2015)

    CAS  Google Scholar 

  4. B. Cao, Y. Bao, Y. Liu, J. Shang, Z. Zhang, Y. He, Z. Feng, B. Dong, Wide-range and highly-sensitive optical thermometers based on the temperature-dependent energy transfer from Er to Nd in Er/Yb/Nd codoped NaYF4 upconversion nanocrystals. Chem. Eng. J. 385, 123906 (2020)

    CAS  Google Scholar 

  5. A.A. Kalinichev, M.A. Kurochkin, A.Y. Kolomytsev, R.S. Khasbieva, E.Y. Kolesnikov, E. Lähderanta, I.E. Kolesnikov, Yb3+/Er3+−codoped GeO2–PbO–PbF2 glass ceramics for ratiometric upconversion temperature sensing based on thermally and non-thermally coupled levels. Opt. Mater. 90, 200–207 (2019)

    CAS  Google Scholar 

  6. G. Gao, D. Busko, R. Joseph, I.A. Howard, A. Turshatov, B.S. Richards, Highly efficient La2O3:Yb3+, Tm3+ single-band NIR-to-NIR upconverting microcrystals for anti-counterfeiting applications. ACS Appl. Mater. Interfaces 10, 39851–39859 (2018)

    CAS  Google Scholar 

  7. R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, X. Liu, Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 10, 237–242 (2015)

    CAS  Google Scholar 

  8. J. Zhao, X. Zheng, E.P. Schartner, P. Ionescu, R. Zhang, T.L. Nguyen, D. Jin, H. Ebendorff-Heidepriem, Upconversion nanocrystal-doped glass: a new paradigm for photonic materials. Adv. Opt. Mater. 4, 1507–1517 (2016)

    CAS  Google Scholar 

  9. R.E. Joseph, D. Hudry, D. Busko, D. Biner, A. Turshatov, K. Krämer, B.S. Richards, I.A. Howard, Bright constant color upconversion based on dual 980 and 1550 nm excitation of SrF2:Yb3+, Er3+ and β-NaYF4:Yb3+, Er3+ micropowders-considerations for persistence of vision displays. Opt. Mater. 111, 110598 (2021)

    CAS  Google Scholar 

  10. V. Kumar, A. Pandey, S.K. Swami, O.M. Ntwaeaborwa, H.C. Swart, V. Dutta, Synthesis and characterization of Er3+-Yb3+ doped ZnO upconversion nanoparticles for solar cell application. J. Alloys Compd. 766, 429–435 (2018)

    CAS  Google Scholar 

  11. S. Hao, Y. Shang, D. Li, H. Agren, C. Yang, G. Chen, Enhancing dye-sensitized solar cell efficiency through broadband near-infrared upconverting nanoparticles. Nanoscale 9, 6711–6715 (2017)

    CAS  Google Scholar 

  12. D. Wang, H. Fan, Z. Chen, X. Wan, S. Tie, S. Lan, Upconversion luminescence of Eu3+ ion in aluminoborate/NaYF4 vitreous composite matrix induced by 800 nm laser. J. Alloys Compd. 657, 115–121 (2016)

    CAS  Google Scholar 

  13. J. Li, T. Li, H. Suo, X. Zhao, C. Guo, Up-conversion emission color tuning in NaLa(MoO4)2:Nd3+/Yb3+/Ho3+ excited at 808 nm. Ceram. Int. 43, 6333–6339 (2017)

    CAS  Google Scholar 

  14. G. Chen, H. Qiu, P.N. Prasad, X. Chen, Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014)

    CAS  Google Scholar 

  15. N.M. Idris, M.K. Jayakumar, A. Bansal, Y. Zhang, Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications. Chem. Soc. Rev. 44, 1449–1478 (2015)

    CAS  Google Scholar 

  16. A. Barh, P.J. Rodrigo, L. Meng, C. Pedersen, P. Tidemand-Lichtenberg, Parametric upconversion imaging and its applications. Adv. Opt. Photon 11, 4–952 (2019)

    Google Scholar 

  17. B.J. Chen, J.X. Yang, E.Y.B. Pun, X. Zhao, H. Lin, Gain anticipation of Ho3+ in ion-exchangeable germanate waveguide glasses. Appl. Phys. B (2018). https://doi.org/10.1007/s00340-018-7085-8

    Article  Google Scholar 

  18. K. Zheng, K.Y. Loh, Y. Wang, Q. Chen, J. Fan, T. Jung, S.H. Nam, Y.D. Suh, X. Liu, Recent advances in upconversion nanocrystals: expanding the kaleidoscopic toolbox for emerging applications. Nano Today 29, 100797 (2019)

    CAS  Google Scholar 

  19. W. Xu, Z. Chen, J. Sun, J. Xu, H. Hao, D. Li, Y. Song, Y. Wang, X. Zhang, Non-contact ratiometric thermometer of NaLuF4:Yb3+/Er3+ phosphors based on multi-phonon assisted excitation. J. Alloys Compd. 766, 305–311 (2018)

    CAS  Google Scholar 

  20. J. Xi, M. Ding, J. Dai, Y. Pan, D. Chen, Z. Ji, Comparison of upconversion luminescent properties and temperature sensing behaviors of β-NaYF4:Yb3+/Er3+ nano/microcrystals prepared by various synthetic methods. J. Mater. Sci.: Mater. Electron. 27, 8254–8270 (2016)

    CAS  Google Scholar 

  21. Y. Miao, P. Wang, H. Guan, Y. Chen, Synthesis and up-conversion luminescence of NaGdF4:Yb3+, Tm3+. J. Mater. Sci.: Mater. Electron. 26, 5748–5752 (2015)

    CAS  Google Scholar 

  22. L.M. Jin, X. Chen, C.K. Siu, F. Wang, S.F. Yu, Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 core-shell nanoparticles via the use of laser cavity. ACS Nano 11, 843–849 (2017)

    CAS  Google Scholar 

  23. B. Gu, C. Zhao, A. Baev, K.-T. Yong, S. Wen, P.N. Prasad, Molecular nonlinear optics: recent advances and applications. Adv. Opt. Photon. 8, 328 (2016)

    Google Scholar 

  24. T.P. Otanicar, D. DeJarnette, Y. Hewakuruppu, R.A. Taylor, Filtering light with nanoparticles: a review of optically selective particles and applications. Adv. Opt. Photon. 8, 541 (2016)

    Google Scholar 

  25. R. Mani, K. Vivekanandan, K. Vallalperuman, Synthesis of pure and cobalt (Co) doped SnO2 nanoparticles and its structural, optical and photocatalytic properties. J. Mater. Sci.: Mater. Electron. 28, 4396–4402 (2016)

    Google Scholar 

  26. C.V. Reddy, I.N. Reddy, K. Ravindranadh, K.R. Reddy, N.P. Shetti, D. Kim, J. Shim, T.M. Aminabhavi, Copper-doped ZrO2 nanoparticles as high-performance catalysts for efficient removal of toxic organic pollutants and stable solar water oxidation. J. Environ. Manage. 260, 110088 (2020)

    CAS  Google Scholar 

  27. N. Xue, Z. Lin, P. Li, P. Diao, Q. Zhang, Sulfur-doped CoSe2 porous nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 12, 28288–28297 (2020)

    CAS  Google Scholar 

  28. O. Akyıldırım, H. Yüksek, H. Saral, İ Ermiş, T. Eren, M.L. Yola, Platinum nanoparticles supported on nitrogen and sulfur-doped reduced graphene oxide nanomaterial as highly active electrocatalysts for methanol oxidation. J. Mater. Sci.: Mater. Electron. 27, 8559–8566 (2016)

    Google Scholar 

  29. F. Qian, M. Guo, Z. Qian, B. Zhao, J. Li, Z. Wu, Z. Liu, Enabling highly structure stability and adsorption performances of Li1.6Mn1.6O4 by Al-gradient surface doping. Sep. Purif. Technol. 264, 118433 (2021)

    CAS  Google Scholar 

  30. Y.K. Liao, P.C. Bruzzese, M. Hartmann, A. Poppl, M. Chiesa, Chromium environment within Cr-doped silico-aluminophosphate molecular sieves from spin density studies. J. Phys. Chem. C 125, 8116–8124 (2021)

    CAS  Google Scholar 

  31. A.I. Khudiar, A.M. Oufi, Influence of the aluminium doping on the physical and gas sensing properties of SnO2 for H2 gas detection. Sens. Actuator B: Chem. 340, 129633 (2021)

    CAS  Google Scholar 

  32. M.K. Ahmed, M.A. Zayed, S.I. El-Dek, M.A. Hady, D.H. El Sherbiny, V. Uskokovic, Nanofibrous epsilon-polycaprolactone scaffolds containing Ag-doped magnetite nanoparticles: physicochemical characterization and biological testing for wound dressing applications in vitro and in vivo. Bioact. Mater. 6, 2070–2088 (2021)

    CAS  Google Scholar 

  33. X. Li, J. Xiang, X. Zhang, H. Li, J. Yang, Y. Zhang, K. Zhang, Y. Chu, Electrospun FeCo nanoparticles encapsulated in N-doped carbon nanofibers as self-supporting flexible anodes for lithium-ion batteries. J. Alloys Compd. 873, 159703 (2021)

    CAS  Google Scholar 

  34. J.-F. Wang, W.-Y. Zhang, J.-P. Guo, S.M. Pasini, A.A. Ulson de Souza, D.-N. He, Simple preparation of high concentration Nd3+-modified NaY zeolites with lower desorption activation energy of water. J. Alloys Compd. 809, 151827 (2019)

    CAS  Google Scholar 

  35. Z. Yao, Q. Luo, G. Zhang, H. Hao, M. Cao, H. Liu, Improved energy-storage performance and breakdown enhancement mechanism of Mg-doped SrTiO3 bulk ceramics for high energy density capacitor applications. J. Mater. Sci.: Mater. Electron. 28, 11491–11499 (2017)

    CAS  Google Scholar 

  36. Z. Yan, Q.-W. Yang, Q. Wang, J. Ma, Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin. Chem. Lett. 31, 583–588 (2020)

    CAS  Google Scholar 

  37. G. Zhang, J. Zhang, Y. Zhou, G. Qi, Y. Wu, C. Hai, W. Tang, Synthesis of aluminum-doped ion-sieve manganese oxides powders with enhanced adsorption performance. Colloids Surf. A: Physicochem. Eng. Asp. 583, 123950 (2019)

    CAS  Google Scholar 

  38. L. Zeng, Z. Li, D. Chen, H. Zhou, J. Zeng, G. Liu, J. Tang, Tin-(IV) dopant-controlled synthesis of Yb3+/Er3+:NaGdF4 nanocrystals: morphology transformation and intensified upconversion performance. J. Alloys Compd. 811, 152048 (2019)

    CAS  Google Scholar 

  39. K. Zou, G. Dong, J. Liu, B. Xu, D. Wang, Effects of calcination temperature and Li+ ions doping on structure and upconversion luminescence properties of TiO2:Ho3+-Yb3+ nanocrystals. J. Mater. Sci. Technol. 35, 483–490 (2019)

    Google Scholar 

  40. C. Zhang, Q. Jiang, M. Liu, H. Ma, Y. Kuai, Enhanced up-conversion luminescent properties of KYb2F7:Er3+ by Sc3+ doping. Opt. Mater. 88, 615–620 (2019)

    CAS  Google Scholar 

  41. Q. Wang, C. Zhang, M. Liu, H. Ma, X. Wang, The synthesis of newly developed Li(1-x-y)NaxKyYF4:Yb3+/Er3+ and its excellent upconversion properties. Opt. Mater. 108, 110164 (2020)

    CAS  Google Scholar 

  42. W. Gao, Z. Sun, Q. Han, S. Han, X. Cheng, Y. Wang, X. Yan, J. Dong, Enhancing upconversion emission of Er3+ in single β-NaYF4 microrod through constructing different inert and active shells with doping Yb3+ ions. J. Alloys Compd. 857, 157578 (2021)

    CAS  Google Scholar 

  43. J. Zhang, B. Qiao, Z. Liang, P. Zuo, Q. Wu, Z. Xu, L. Piao, S. Zhao, Near-infrared light-induced photocatalysis of NaYF4:Yb, Tm@Cu2O core-shell nanocomposites. Opt. Mater. 84, 89–93 (2018)

    CAS  Google Scholar 

  44. H. Liao, S. Ye, Y. Shi, D. Wang, Optical-magnetic bifunctional sub-20 nm β-NaYF4:Yb3+/Er3+@NaGdF4:Yb3+/Nd3+@NaGdF4 core-shell-shell nanoparticles triggered by 808 nm light. Opt. Mater. 98, 109489 (2019)

    CAS  Google Scholar 

  45. G.-S. Yi, G.-M. Chow, Water-soluble NaYF4:Yb, Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19, 341–343 (2007)

    CAS  Google Scholar 

  46. Y. Cui, S. Zhao, M. Han, P. Li, L. Zhang, Z. Xu, Synthesis of water dispersible hexagonal-phase NaYF4:Yb, Er nanoparticles with high efficient upconversion fluorescence. J. Nanosci. Nanotechnol. 14, 3597–3601 (2014)

    CAS  Google Scholar 

  47. Z. Zang, Y. Zhang, Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation. Appl. Opt. 51, 3424 (2012)

    CAS  Google Scholar 

  48. G. Xiang, J. Zhang, Z. Hao, X. Zhang, G.H. Pan, Y. Luo, W. Lu, H. Zhao, Importance of suppression of Yb3+ de-excitation to upconversion enhancement in β-NaYF4:Yb3+/Er3+@β-NaYF4 sandwiched structure nanocrystals. Inorg. Chem. 54, 3921–3928 (2015)

    CAS  Google Scholar 

  49. V. Lupei, A. Lupei, C. Gheorghe, L. Gheorghe, A. Achim, A. Ikesue, Crystal field disorder effects in the optical spectra of Nd3+ and Yb3+-doped calcium lithium niobium gallium garnets laser crystals and ceramics. J. Appl. Phys. 112, 063110 (2012)

    Google Scholar 

  50. X. Xie, N. Gao, R. Deng, Q. Sun, Q.H. Xu, X. Liu, Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles. J. Am. Chem. Soc. 135, 12608–12611 (2013)

    CAS  Google Scholar 

  51. T. Kushida, Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. III. Dominant transfer mechanism. J. Phys. Soc. Jpn. 34, 1334–1337 (1973)

    CAS  Google Scholar 

  52. T. Kushida, Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation. J. Phys. Soc. Jpn. 34, 1318–1326 (1973)

    CAS  Google Scholar 

  53. A. Dubey, A.K. Soni, A. Kumari, R. Dey, V.K. Rai, Enhanced green upconversion emission in NaYF4:Er3+/Yb3+/Li+ phosphors for optical thermometry. J. Alloys Compd. 693, 194–200 (2017)

    CAS  Google Scholar 

  54. M. Wu, D.N. Congreve, M.W.B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M.G. Bawendi, M.A. Baldo, Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 10, 31–34 (2015)

    Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities [Grant Number 2652015092].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. ML contributed to the conception of the study. Material preparation, data collection, and analysis were performed by HH, QJ, and YL. YL and QJ contributed significantly to analysis and manuscript preparation. The first draft of the manuscript was written by HH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Meitang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Jiang, Q., Li, Y. et al. Effect of homogeneous coating on K+-doped NaGdF4:Er3+,Yb3+ upconversion materials. J Mater Sci: Mater Electron 33, 596–606 (2022). https://doi.org/10.1007/s10854-021-07328-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07328-w

Navigation