Skip to main content
Log in

Structural and dielectric behaviors for Mg0.5Co0.5Fe2O4 spinel ferrite synthesized by sol–gel route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the structural and dielectric properties for Mg0.5Co0.5Fe2O4 ferrite (abbreviated as MCFO) prepared by sol–gel process were investigated. The XRD characterization for this sample confirmed the development of the face-centered cubic spinel structure with \(Fd\overline{3 }m\) space group. The Nyquist plots are well modeled by an equivalent electrical circuit made up of a combination of grain and grain boundary elements. The behavior of dielectric constants has been interpreted based on the Maxwell–Wagner’s theory of interfacial polarization. Electrical properties show that the sample exhibits higher electrical resistivity. The non-overlapping small polaron tunneling and the correlated barrier hopping are the suitable models to describe the conduction process for the sample. The conductivity spectra do not follow both Ghosh scaling and Summerfield scaling. The random barrier model (RBM) is applied to correct the Summerfield scaling. According to this model, the conductivity isotherms for the MCFO ferrite are almost merged into a common curve with negative values of the scaling parameter α. This indicates that the conductivity comes from non-interacting particles. The behaviors of imaginary parts of impedance (Z″) and modulus (M″) show dielectric-relaxation phenomenon in the sample with activation energies near to those determined from the conductivity study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.B. Narang, K. Pubby, J. Magn. Magn. Mater. 519, 167163 (2021)

    CAS  Google Scholar 

  2. H. Mamiya, N. Terada, T. Furubayashi, H.S. Suzuki, H. Kitazawa, J. Magn. Magn. Mater. 322, 1561 (2010)

    CAS  Google Scholar 

  3. E. Oumezzine, S. Hcini, M. Baazaoui, E.K. Hlil, M. Oumezzine, Powder Technol. 278, 189 (2015)

    CAS  Google Scholar 

  4. A. Goldman, A.M. Laing, J. Phys. Colloques 38, C1-297 (1977)

    Google Scholar 

  5. M. Rozman, M. Drofenik, J. Am. Ceram. Soc. 78, 2449 (1995)

    CAS  Google Scholar 

  6. J.G. Paika, M.J. Lee, S.H. Hyun, Thermochim. Acta 425, 131 (2005)

    Google Scholar 

  7. G. Busca, E. Finocchio, V. Lorenzelli, M. Trombetta, S.A. Rossini, J. Chem. Soc. Faraday Trans. 92, 4687 (1996)

    CAS  Google Scholar 

  8. Y. Shimizu, H. Arai, T. Seiyama, Sens. Actuators 7, 11 (1985)

    CAS  Google Scholar 

  9. S. Verma, P.A. Joy, Y.B. Khollam, H.S. Potdar, S.B. Deshpande, Mater. Lett. 58, 1092 (2004)

    CAS  Google Scholar 

  10. S.A. Oliver, R.J. Willey, H.H. Handeh, G. Oliveri, G. Busca, Scr. Mater. 33, 1695 (1995)

    CAS  Google Scholar 

  11. V. Pallai, D.O. Shan, J. Magn. Magn. Mater. 163, 243 (1996)

    Google Scholar 

  12. R. Skomski, J. Phys. Condens. Matter 15, R1 (2003)

    Google Scholar 

  13. K. Maaz, A. Mumatz, S.K. Hasanain, A. Ceylan, J. Magn. Magn. Mater. 308, 289 (2007)

    CAS  Google Scholar 

  14. M.H. Sousa, F.A. Tourinho, J. Phys. Chem. B 105, 1168 (2001)

    CAS  Google Scholar 

  15. F. Mazaleyrate, L.K. Varga, J. Magn. Magn. Mater. 253, 215 (2000)

    Google Scholar 

  16. Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, Mater. Lett. 60, 3548 (2006)

    CAS  Google Scholar 

  17. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Google Scholar 

  18. H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  CAS  Google Scholar 

  19. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    CAS  Google Scholar 

  20. M.A. Ahmed, A.A. El-Khawlani, J. Magn. Magn. Mater. 321, 1959 (2009)

    CAS  Google Scholar 

  21. A.G. Bhosale, B.K. Chougule, Mater. Chem. Phys. 97, 273 (2006)

    CAS  Google Scholar 

  22. B. Antic, A. Kremenovic, A.S. Nikolic, M. Stoiljkovic, J. Phys. Chem. B 108, 12646 (2004)

    CAS  Google Scholar 

  23. K. Verma, A. Kumar, D. Varshney, J. Alloys Compd. 526, 91 (2012)

    CAS  Google Scholar 

  24. M. Anis-ur-Rehman, M.A. Malik, M. Akram, M. Kamran, K. Khan, A. Maqsood, J. Supercond. Nov. Magn. 25, 2691 (2012)

    CAS  Google Scholar 

  25. V.L. Mathe, R.B. Kamble, Mater. Res. Bull. 48, 1415 (2013)

    CAS  Google Scholar 

  26. S.K. Mandal, S. Singh, P. Dey, J.N. Roy, P.R. Mandal, T.K. Nath, J. Alloys Comp. 656, 887 (2016)

    CAS  Google Scholar 

  27. M.A. Rahman, A.K.M.A. Hossain, Phys. Scr. 89, 025803 (2014)

    CAS  Google Scholar 

  28. M. Nadeem, M.J. Akhtar, A.Y. Khan, R. Shaheen, M.N. Haque, Chem. Phys. Lett. 366, 433 (2002)

    CAS  Google Scholar 

  29. M. Shah, M. Nadeem, M. Idrees, M. Atif, M.J. Akhtar, J. Magn. Magn. Mater. 332, 61 (2013)

    CAS  Google Scholar 

  30. Y. Moualhi, R. M’nassri, M.M. Nofal, H. Rahmouni, A. Selmi, M. Gassoumi, N. Chniba-Boudjada, K. Khirouni, A. Cheikrouhou, Eur. Phys. J. Plus 135, 809 (2020)

    CAS  Google Scholar 

  31. Y. Moualhi, R. M’nassri, M.M. Nofal, H. Rahmouni, A. Selmi, M. Gassoumi, N. Chniba-Boudjada, K. Khirouni, A. Cheikhrouhou, J. Mater. Sci. Mater Electron 31, 21046 (2020)

    CAS  Google Scholar 

  32. A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phys. Chem. Solid. 70, 1401 (2009)

    CAS  Google Scholar 

  33. D. Johnson, ZView: A Software Program for IES Analysis. Version 2.8 (Scribner Associates, Inc., Southern Pines, 2008)

    Google Scholar 

  34. N. Hamdaoui, Y.A. Kalandaragh, M. Khlifi, L. Beji, Ceram. Int. 45, 16458 (2019)

    CAS  Google Scholar 

  35. K. Saidi, S. Kamoun, H.F. Ayedi, M. Arous, J. Phys. Chem. Solid 74, 1560 (2013)

    CAS  Google Scholar 

  36. A. Selmi, S. Hcini, H. Rahmouni, A. Omri, M.L. Bouazizi, A. Dhahri, Phase Transit. 90, 942 (2017)

    CAS  Google Scholar 

  37. M. Hsini, N. Hamdaoui, S. Hcini, M.L. Bouazizi, S. Zemni, L. Beji, Phase Transit. 91, 316 (2018)

    CAS  Google Scholar 

  38. F. Hcini, S. Hcini, B. Alzahrani, S. Zemni, M.L. Bouazizi, J. Mater. Sci. Mater. Electron. 31, 14986 (2020)

    CAS  Google Scholar 

  39. F. Hcini, S. Hcini, B. Alzahrani, S. Zemni, M.L. Bouazizi, Appl. Phys. A 126, 362 (2020)

    CAS  Google Scholar 

  40. K.W. Wagner, Ann. Phys. 40, 817 (1913)

    Google Scholar 

  41. C.G. Koops, Phys. Rev. 83, 121 (1951)

    CAS  Google Scholar 

  42. S. Hcini, A. Omri, M. Boudard, M.L. Bouazizi, A. Dhahri, K. Touileb, J. Mater. Sci. Mater. Electron. 29, 6879 (2018)

    CAS  Google Scholar 

  43. S. Hcini, A. Selmi, H. Rahmouni, A. Omri, M.L. Bouazizi, Ceram. Int. 43, 2529 (2017)

    CAS  Google Scholar 

  44. S. Kamba, V. Bovtun, J. Petzelt, I. Rychetsky, R. Mizaras, A. Brilingas, J. Banys, J. Grigas, M. Kosec, J. Phys. Condens. Matter 12, 497 (2000)

    CAS  Google Scholar 

  45. B.P. Das, P.K. Mahapatra, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 15, 107 (2004)

    CAS  Google Scholar 

  46. M.B. Hossen, A.K.M.A. Hossain, Mater. Sci. Pol. 33(2), 259 (2015)

    CAS  Google Scholar 

  47. R. Elwej, M. Hamdi, N. Hannachi, F. Hlel, Mater. Res. Bull. 62, 42 (2014)

    Google Scholar 

  48. M. Sassi, A. Oueslati, M. Gargouri, Appl. Phys. A 119, 763 (2015)

    CAS  Google Scholar 

  49. M. Megdiche, H. Mahmoud, B. Louati, F. Hlel, K. Guidara, Ionics 16, 655 (2010)

    Google Scholar 

  50. F.B. Abdallah, A. Benali, S. Azizi, M. Triki, E. Dhahri, M.P.F. Graça, M.A. Valente, J. Mater. Sci. Mater. Electron. 30, 8457 (2019)

    CAS  Google Scholar 

  51. M.B. Bechir, K. Karoui, M. Tabellout, K. Guidara, A.B. Rhaiem, J. Appl. Phys 115, 203712 (2014)

    Google Scholar 

  52. F. Jensen, Qual. Reliab. Eng. Int. 1, 12 (1985)

    Google Scholar 

  53. D.G. Chen, X.G. Tang, J.B. Wu, W. Zhang, Q.X. Liu, Y.P. Jiang, J. Magn. Magn. Mater. 323, 1717 (2011)

    CAS  Google Scholar 

  54. S.A. Saafann, T.M. Meaz, E.H. El-Ghazzawy, J. Magn. Magn. Mat. 323, 1517 (2011)

    Google Scholar 

  55. S.A. Mazen, A.M. El Taher, J. Alloys Comp. 498, 19 (2010)

    CAS  Google Scholar 

  56. P.V.B. Reddy, B. Ramesh, C.G. Reddy, Physica B 405, 1852 (2010)

    CAS  Google Scholar 

  57. M. Nasri, C. Henchiri, R. Dhahri, J. Khelifi, H. Rahmouni, E. Dhahri, L.H. Omari, A. Tozri, M.R. Berber, Mater. Sci. Eng. B 272, 115331 (2021)

    CAS  Google Scholar 

  58. E. Oumezzine, S. Hcini, F.I.H. Rhouma, M. Oumezzine, J. Alloys Compd. 726, 187 (2017)

    CAS  Google Scholar 

  59. K. Ramarao, B.R. Babu, B.K. Babu, V. Veeraiah, S.D. Ramarao, K. Rajasekhar, A.V. Rao, Phys. B Condens. Matter. 528, 18 (2018)

    CAS  Google Scholar 

  60. H. Rahmouni, B. Cherif, R. Jemai, A. Dhahri, K. Khirouni, J. Alloys Compd. 690, 890 (2017)

    CAS  Google Scholar 

  61. A. Ghosh, A. Pan, Phys. Rev. Lett. 84, 2188 (2000)

    CAS  Google Scholar 

  62. S. Summerfield, Philos. Mag. Part B 52, 22 (1985)

    Google Scholar 

  63. P.S. Raghvendra, O. Parkash, D. Kuma, Phys. Rev. B 84, 174306 (2011)

    Google Scholar 

  64. B. Roling, A. Happe, K. Funke, M.D. Ingram, Phys. Rev. Lett. 78, 2160 (1997)

    CAS  Google Scholar 

  65. S. Murugavel, B. Roling, Phys. Rev. Lett. 89, 902 (2002)

    Google Scholar 

  66. S.D. Baranovskii, H. Cordes, J. Chem. Phys. 111, 7546 (1999)

    CAS  Google Scholar 

  67. A. Ioanid, A.S. Dafinei, J. Optoelectron. Adv. Mater. 6, 465 (2004)

    CAS  Google Scholar 

  68. R. Bergman, J. Appl. Phys. 88, 1356 (2000)

    CAS  Google Scholar 

  69. K.S. Rao, P.M. Krishna, D.M. Prasad, D. Gangadharudu, J. Mater. Sci. 42, 4801 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research in the field of scientific research and technology.

Funding

This work was funded by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research Project No. 2020/01/16565.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Hcini or M. L. Bouazizi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabbebi, T., Hcini, S., Alzahrani, B. et al. Structural and dielectric behaviors for Mg0.5Co0.5Fe2O4 spinel ferrite synthesized by sol–gel route. J Mater Sci: Mater Electron 33, 490–504 (2022). https://doi.org/10.1007/s10854-021-07322-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07322-2

Navigation