Skip to main content
Log in

Flowerlike Fe2O3–polyaniline nanocomposite as electrode for supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the synthesis of a binary nanocomposite of Fe2O3 and polyaniline (PAni) using a facile two-step process in which Fe2O3 nanohexagons are hydrothermally produced in the first step and then these nanohexagons are embedded in PAni via in situ polymerization of aniline. Electron microscopic and X-ray diffraction analyses of the synthesized Fe2O3–PAni composite revealed a flowerlike nanoscale architecture with the flowers ranging around 400 nm in size. When tested as electrode for supercapacitor, Fe2O3–PAni nanoflower composite exhibited specific capacitance as high as 1033 F/g at a scan rate of 5 mV/s and upto 82% charge retention after 1500 charge–discharge cycles. Electrochemical impedance spectroscopy (EIS) showed a much lower charge transfer and equivalent series resistance values for the Fe2O3–PAni nanocomposite electrode compared to that of bare Fe2O3 nanohexagon-based electrode. The outstanding electrochemical performance of the composite arises from the nanoflowerlike architecture of the electrode material and good chemical bonding between Fe2O3 and PAni, resulting in high surface area and good electrical conductivity. Thus, we show that the nanoflowerlike Fe2O3–PAni composite can be a good candidate as electrode material for supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Winter, Chem. Rev. 104, 4245–4270 (2004)

    Article  CAS  Google Scholar 

  2. J.R. Miller, P. Simon, Science 321, 651 (2008)

    Article  CAS  Google Scholar 

  3. G.Q. Zhang, H.B. Wu, H.E. Hoster, M.B. Chan-Park, X.W. Lou, Energy Environ. Sci. 5, 9453 (2012)

    Article  CAS  Google Scholar 

  4. P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210 (2014)

    Article  CAS  Google Scholar 

  5. P. Chatterjee, A.K. Chakraborty, Opt. Mater. 111, 110610 (2021)

    Article  CAS  Google Scholar 

  6. S.G. Chatterjee, S. Dey, D. Samanta, S. Santra, S. Chatterjee, P.K. Guha, A.K. Chakraborty, J. Mater. Sci. Mater. Electron. 29(23), 20162–20171 (2018)

    Article  Google Scholar 

  7. S.M.D. Watson, K.S. Coleman, A.K. Chakraborty, ACS Nano 2, 643 (2008)

    Article  CAS  Google Scholar 

  8. P. Tiwary, R. Mahapatra, A.K. Chakraborty, J. Mater. Sci. Mater. Electron. 30, 5464–5469 (2019)

    Article  CAS  Google Scholar 

  9. H. Jiang, J. Ma, C.Z. Li, Adv. Mater. 24, 4197–4202 (2012)

    Article  CAS  Google Scholar 

  10. X. Zhao, B.M. Sanchez, P.J. Dobson, P.S. Grant, Nanoscale 3, 839–855 (2011)

    Article  CAS  Google Scholar 

  11. Z.S. Wu, G.M. Zhou, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Nano Energy 1, 107–131 (2012)

    Article  CAS  Google Scholar 

  12. M. Zhia C. Xiang, J. Li, M. Lia, N. Wu, Nanoscale 5, 72 (2013)

  13. Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang, Y.-W. Yang, Nanomaterials 5(4), 1667–1689 (2015)

    Article  CAS  Google Scholar 

  14. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Adv. Mater. 29, 1605336 (2017)

    Article  Google Scholar 

  15. G. Binitha, M.S. Soumya, A.A. Madhavan, P. Praveen, A. Balakrishnan, K.R.V. Subramanian, M.V. Reddy, S.V. Nair, A.S. Nair, N. Sivakumar, J. Mater. Chem. A 1, 11698–11704 (2013)

    Article  CAS  Google Scholar 

  16. S. Shivakumara, T.R. Penki, N. Munichandraiah, Mater. Lett. 131, 100–103 (2014)

    Article  CAS  Google Scholar 

  17. M.B. Sassin, A.N. Mansour, K.A. Pettigrew, D.R. Rolison, J.W. Long, ACS Nano 4, 4505–4514 (2010)

    Article  CAS  Google Scholar 

  18. B.P. Prasanna, D.N. Avadhani, M.S. Raghu, K.Y. Kumar, Mater. Today Commun. 12, 72–78 (2017)

    Article  Google Scholar 

  19. I. Chakraborty, N. Chakrabarty, A. Senapati, A.K. Chakraborty, J. Phys. Chem. C. 122, 27180–27190 (2018)

    Article  CAS  Google Scholar 

  20. Jaidev, R I. Jafri, A. K. Mishra, S. Ramaprabhu, J. Mater. Chem., 21, 17601–17605 (2011).

  21. N. Chakrabarty, M. Char, S. Krishnamurthy, A.K. Chakraborty, Mater. Adv. 2, 366–375 (2021)

    Article  CAS  Google Scholar 

  22. M.A.A.M. Abdah, N.H.N. Azman, S. Kulandaivalu, Y. Sulaiman, Mater. Des. 186, 108199 (2020)

    Article  Google Scholar 

  23. N. Chakrabarty, A. Dey, S. Krishnamurthy, A.K. Chakraborty, Appl. Surf. Sci. 536, 147960 (2021)

    Article  CAS  Google Scholar 

  24. X. Yan, J. Chen, J. Yang, Q. Xue, P. Miele, A.C.S. Appl, Mater. Interfaces 2, 2521–2529 (2010)

    Article  CAS  Google Scholar 

  25. R.K. Agrawalla, S. Paul, P.K. Sahoo, A.K. Chakraborty, A.K. Mitra, J. Appl. Polym. Sci. 132, 41692 (2015)

    Google Scholar 

  26. D. Li, J. Huang, R.B. Kaner, Acc. Chem. Res. 42, 135–145 (2008)

    Article  Google Scholar 

  27. Z. Yang, L. Tang, J. Ye, D. Shi, S. Liu, M. Chen, Electrochim. Acta 269, 21–29 (2018)

    Article  CAS  Google Scholar 

  28. N. Chakrabarty, A.K. Chakraborty, H. Kumar, J. Phys. Chem. C. 123, 29104–29115 (2019)

    Article  CAS  Google Scholar 

  29. N. Chakrabarty, A.K. Chakraborty, Electrochim. Acta. 297, 173–187 (2019)

    Article  CAS  Google Scholar 

  30. F. Lufrano, P. Staiti, M. Minutoli, J. Electrochem. Soc. 151(1), A64–A68 (2004)

    Article  CAS  Google Scholar 

  31. M. Arunkumar, A. Paul, ACS Omega 2(11), 8039–8050 (2017)

    Article  Google Scholar 

  32. J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, J. Power Sources 195, 3041–3045 (2010)

    Article  CAS  Google Scholar 

  33. E. Song, J.-W. Choi, Nanomaterials 3, 498–523 (2013)

    Article  CAS  Google Scholar 

  34. V.D. Nithya, N.S. Arul, J. Power Sources 327, 297–318 (2016)

    Article  CAS  Google Scholar 

  35. P.M. Padwal, S.L. Kadam, S.M. Mane, S.B. Kulkarni, J. Mater. Sci. 51, 10499–10505 (2016)

    Article  CAS  Google Scholar 

  36. K. Ahmad, S.M. Mobin, Nanoscale Adv. 1, 719–727 (2019)

    Article  CAS  Google Scholar 

  37. S. Gao, G. Zhang, Y. Wang, X. Han, Y. Huang, P. Liu, J. Mater. Sci. Technol. 88, 56–65 (2021)

    Article  Google Scholar 

  38. P. Liu, S. Gao, G. Zhang, Y. Huang, W. You, R. Che, Adv. Funct. Mater. 31, 2102812 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Chakraborty.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senapati, A., Chakraborty, A.K. Flowerlike Fe2O3–polyaniline nanocomposite as electrode for supercapacitor. J Mater Sci: Mater Electron 32, 27794–27800 (2021). https://doi.org/10.1007/s10854-021-07161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07161-1

Navigation