Skip to main content
Log in

Thermal field distribution investigation and simulation of silver paste heating fabric by screen printing based on Joule heating effect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible electric heating elements can be integrated into cloths to provide warm for people’s working and living in low-temperature environments and can also provide hyperthermia for elderly and patients. Due to its low energy consumption, reusable, environment friendly, and pollution free, electric heating cloths have a broad market prospect. In this research, a facile method, screen printing, is used to prepare the heating element. Silver paste heating fabric with low resistivity could heat rapidly under low loaded voltage. The Ansys finite element software is used to simulate the Joule heating behavior. The results of the experiment and simulation were highly consistent. Through experiments, theoretical derivation, and simulation analysis, we found that the silver paste heating fabric has a good Joule heating behavior, and the simulation can be applied to the circuit design, implying that it will have a broad application prospect in electric heating clothing fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.H. Kim, K.S. Kim, K.R. Jang, S.B. Jung, T.S. Kim, Adv. Mater. Interfaces (2015). https://doi.org/10.1002/admi.201500283

    Article  Google Scholar 

  2. K. Arapov, E. Rubingh, R. Abbel, J. Laven, G. De With, H. Friedrich, Adv. Funct. Mater. 26(4), 586–593 (2015). https://doi.org/10.1002/adfm.201504030

    Article  CAS  Google Scholar 

  3. C. Das, K. Krishnamoorthy, Acs Appl. Mater. Interfaces 8(43), 29504 (2016). https://doi.org/10.1021/acsami.6b10431

    Article  CAS  Google Scholar 

  4. F. Govaert, M. Vanneste, J. Nanomater. (2014). https://doi.org/10.1155/2014/651265

    Article  Google Scholar 

  5. F. Shu, W. Rui, N. Haisu, L. Hao, L. Li, J. Ind. Text. (2020). https://doi.org/10.1177/1528083720968278

    Article  Google Scholar 

  6. P.C. Hsu, X. Liu, C. Liu et al., Nano Lett. 15, 365–371 (2015). https://doi.org/10.1021/nl5036572

    Article  CAS  Google Scholar 

  7. Y. Guo, K. Li, C. Hou, Y. Li, Q. Zhang, H.F. Wang, Acs Appl. Mater Interfaces 8, 4676–4683 (2016). https://doi.org/10.1021/acsami.5b11622

    Article  CAS  Google Scholar 

  8. J. Lv, P. Zhou, L. Zhang, Chem. Eng. J. 361, 897–907 (2019). https://doi.org/10.1016/j.cej.2018.12.083

    Article  CAS  Google Scholar 

  9. Q.-W. Wang, H.-B. Zhang, J. Liu, Adv. Funct. Mater. 29, 1806819 (2019). https://doi.org/10.1002/adfm.201806819

    Article  CAS  Google Scholar 

  10. J. Luo, H. Lu, Q. Zhang, Y. Yao, M. Chen, Q. Li, Carbon 110, 343–349 (2016). https://doi.org/10.1016/j.carbon.2016.09.016

    Article  CAS  Google Scholar 

  11. M.S. Sadi, M. Yang, L. Luo, D. Cheng, G. Cai, X. Wang, Cellulose 26, 6179–6188 (2019). https://doi.org/10.1007/s10570-019-02526-6

    Article  CAS  Google Scholar 

  12. D. Wang, Y. Zhang, X. Lu, Chem. Soc. Rev. 47(12), 4611 (2018). https://doi.org/10.1039/c7cs00192d

    Article  CAS  Google Scholar 

  13. R. Yan, Q. Zhang, B. Shi, Z. Qin, S. Wei, L. Jia, Composite Struct. 248, 112501 (2020)

    Article  Google Scholar 

  14. X. Zhou, Y. Peng, R. Peng, X. Zeng, T. Guo, Acs Appl. Mater. Interfaces 8(36), 24248–24255 (2016). https://doi.org/10.1021/acsami.6b08278

    Article  CAS  Google Scholar 

  15. B. Deore, C. Paquet, A.J. Kell, Acs Appl. Mater. Interfaces 11, 38880–38894 (2019). https://doi.org/10.1021/acsami.9b08854

    Article  CAS  Google Scholar 

  16. J.H. Lee, P.A. Dzagbletey, M.J. Jang, Adv. Eng. Mater. (2020). https://doi.org/10.1002/adem.202000722

    Article  Google Scholar 

  17. D. Li, R. Wang, X. Liu, S. Zhang, S. Fang, R. Yan, Compos. Struct. 249, 112557 (2020). https://doi.org/10.1016/j.compstruct.2020.112557

    Article  Google Scholar 

  18. G.B. Tseghai, B. Malengier, K.A. Fante, Sensors 20(6), 1742 (2020). https://doi.org/10.3390/s20061742

    Article  CAS  Google Scholar 

  19. M.S. Sadi, M. Yang, L. Luo, D. Cheng, X. Wang, Cellulose 26, 6179–6188 (2019). https://doi.org/10.1007/s10570-019-02526-6

    Article  CAS  Google Scholar 

  20. M. Li, Z. Li, J. Wang, C. Wang, S. Lu, Fibers Polym. 18, 1975–1980 (2017). https://doi.org/10.1007/s12221-017-7439-6

    Article  CAS  Google Scholar 

  21. B. Farnworth, Text. Res. J. 53(12), 717–725 (1983). https://doi.org/10.1177/004051758305301201

    Article  Google Scholar 

  22. F. Jintu, Z. Luo, Y. Li, Int. J. Heat Mass Transf. 43(16), 2989–3000 (2000). https://doi.org/10.1016/s0017-9310(99)00235-5

    Article  Google Scholar 

  23. P. Nordon, H.G. David, Int. J. Heat Mass Transf. 10, 853–866 (1967). https://doi.org/10.1016/0017-9310(67)90065-8

    Article  CAS  Google Scholar 

  24. F.D. Monte, Int. J. Therm. Sci. 45(9), 882–892 (2006). https://doi.org/10.1016/j.ijthermalsci.2005.11.006

    Article  Google Scholar 

  25. Y. Zheng, Q. Zhang, W. Jin, J. Mater. Chem. A (2020). https://doi.org/10.1039/c9ta12494b

    Article  Google Scholar 

  26. R. Penide-Fernandez, F. Sansoz, Int. J. Heat Mass Transf. 145, 118721 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118721

    Article  CAS  Google Scholar 

  27. Y. Sun, X. Chen, Int. J. Cloth. Sci. Technol. 22, 161–173 (2010). https://doi.org/10.1108/09556221011018630

    Article  Google Scholar 

  28. Y. Yang, J. Qian, Y. Chen, Int. J. Cloth. Sci. Technol. 31, 825–38 (2019). https://doi.org/10.1108/IJCST-03-2019-0026

    Article  Google Scholar 

  29. Y. Li, H. Liu, X. Li, Adv. Mater. Mach. Electron. 1808(2017), 020009 (2017). https://doi.org/10.1063/1.4977257

    Article  Google Scholar 

  30. H. Liu, J. Li, L. Chen, Text. Res. J. 86, 1398–1412 (2015). https://doi.org/10.1177/0040517515612359

    Article  CAS  Google Scholar 

  31. L. Hao, Z. Yi, C. Li, X. Li, W. Yuxiu, G. Yan, Measurement 45, 1855–1865 (2012). https://doi.org/10.1016/j.measurement.2012.03.032

    Article  Google Scholar 

  32. J.P. Holman, Heat Transfer, 10th edn. (McGraw-Hill Companies Inc, New York, 2010)

    Google Scholar 

  33. Z. Sun, N. Pan, Thermal and Moisture Transport in Fibrous Materials (Woodhead Publishing, Cambridge, 2006), pp. 439–466

    Google Scholar 

  34. P.S.H. Henry, Discuss. Faraday Soc. 3, 243 (1948). https://doi.org/10.1039/df9480300243

    Article  Google Scholar 

  35. S. Cimilli, F.B.U. Nergis, C. Candan, Text. Res. J. 78, 53–59 (2008). https://doi.org/10.1177/0040517507082186

    Article  CAS  Google Scholar 

  36. X.J. Ran, Q.Y. Zhu, Y. Li, Int. J. Cloth. Sci. Technol. 54, 3575–86 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.029

    Article  Google Scholar 

  37. W.H. Rees, J. Text. Inst. Trans. 1132(8), T149–T165 (1941). https://doi.org/10.1080/19447024108659364

    Article  Google Scholar 

  38. M.O.R. Siddiqui, D.M. Sun, Comput. Mater. Sci. 75, 45–51 (2013). https://doi.org/10.1016/j.commatsci.2013.04.003

    Article  CAS  Google Scholar 

  39. R. Xu, W. Wang, D. Yu, Composite Struct. 212, 58–65 (2019). https://doi.org/10.1016/j.compstruct.2019.01.032

    Article  Google Scholar 

  40. X. Li, Y. Li, T. Guan, F. Xu, J. Sun, Acs Appl. Mater. Interfaces 10, 12042–12050 (2018). https://doi.org/10.1021/acsami.8b01279

    Article  CAS  Google Scholar 

  41. S.T.A. Hamdani, P. Potluri, A. Fernando, Materials 6, 1072–1089 (2013). https://doi.org/10.3390/ma6031072

    Article  Google Scholar 

  42. S. Shang, X. Yang, X.-M. Tao, S.S. Lam, Polym. Int. 59(2), 204–211 (2009). https://doi.org/10.1002/pi.2709

    Article  CAS  Google Scholar 

  43. X. Li, X. Sheng, Y. Guo et al., J. Mater. Sci. Technol. 86(31), 171–179 (2021). https://doi.org/10.1016/j.jmst.2021.02.009

    Article  Google Scholar 

  44. F.J. Romero, A. Rivadeneyra, I. Ortiz-Gomez et al., Nanomaterials (2019). https://doi.org/10.3390/nano9091184

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China [grant no. 2019YFF0302100]; the China National Textile And Apparel Council [Gran No. 2017060]; Natural Science Foundation of Tianjin [Grant No.18JCYBJC18500]; the Postdoctoral Science Foundation of China [Grant No. 2016M591390]; and the National Natural Science Foundation of China [Grant No.51473122].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Liu, Yafang Li or Li Liu .

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 628 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Wang, R., Ni, H. et al. Thermal field distribution investigation and simulation of silver paste heating fabric by screen printing based on Joule heating effect. J Mater Sci: Mater Electron 32, 27762–27776 (2021). https://doi.org/10.1007/s10854-021-07159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07159-9

Navigation