Skip to main content
Log in

Studies of microstructural, dielectric, and impedance spectroscopic properties of Bi0.617Y0.05Cu3Ti4O12 ceramic synthesized through semi-wet route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi0.617Y0.05Cu3Ti4O12(BYCTO) was successfully synthesized through an economically semi-wet route using metals nitrates, acetate, and TiO2 precursor and sintered at 1173 K for 8 h. The single phase of ceramic was authorized by XRD analysis. The crystallite size of BYCTO ceramic was calculated to be 62.3 nm through XRD measurement. The particle size obtained by TEM analysis was to be in the range of 55 ± 7 nm. The average grain size observed through the SEM technique was 0.783 μm. The route means square roughness, as well as average roughness, were determined to be 0.224 μm and 0.179 μm by atomic force microscope. The dielectric constant (ɛ′) of BYCTO was measured to be 1481 at 307 K and 100 Hz. The tangent loss (tan δ) was observed to be in the range of 0.13–0.29 at all selected temperatures (307–487 K) and 10 kHz which is lower than that of Bi2/3Cu3Ti4O12. The oxidation state of all metal present in the ceramic material was verified by XPS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Sun, L.F. Xu, C. Mao, X. Feng, J.Y. Liang, H.B. Xiao, R.L. Wang, D.W. Shi, C.P. Yang, J. Alloys Compd. 704, 676 (2017)

    Article  CAS  Google Scholar 

  2. P. Mao, J. Wang, S. Liu, L. Zhang, Y. Zhao, L. He, J. Alloys Compd. 778, 625 (2019)

    Article  CAS  Google Scholar 

  3. L.C. Kretly, A.F.L. Almeida, P.B.A. Fechine, R.S. De Oliveira, A.S.B. Sombra, J. Mater. Sci. 15, 657 (2004)

    CAS  Google Scholar 

  4. R. K. Pandey, W. A. Stapleton, J. Tate, A. K. Bandyopadhyay, I. Sutanto, S. Sprissler, and S. Lin, AIP Adv. 3, 0 (2013).

  5. S. Rani, N. Ahlawat, K.M. Sangwan, S. Rani, R. Punia, J. Malik, J. Mater. Sci. Mater. 29, 10825 (2018)

    Article  CAS  Google Scholar 

  6. L. Singh, B.C. Sin, I.W. Kim, K.D. Mandal, H. Chung, Y. Lee, J. Am. Ceram. Soc. 99, 27 (2016)

    Article  CAS  Google Scholar 

  7. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  CAS  Google Scholar 

  8. C. Kai, L. Wei, L. Yun-Fei, B. Peng, L. Xiao-Mei, Z. Jin-Song, Chin. Phys. Lett. 21, 1815 (2004)

    Article  Google Scholar 

  9. M. Li, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 88, 1 (2006)

    Google Scholar 

  10. M. H. Cohen, J. B. Neaton, L. He, D. Vanderbilt, M. H. Cohen, J. B. Neaton, L. He, and D. Vanderbilt, 3299, (2012).

  11. M. Li, Z. Shen, M. Nygren, A. Feteira, D. C. Sinclair, and A. R. West, J. Appl. Phys. 106, (2009).

  12. P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ramírez, W.C. Ribeiro, E. Longo, J.A. Varela, J. Phys. D 42, 055404 (2009)

    Article  CAS  Google Scholar 

  13. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  CAS  Google Scholar 

  14. W. Li, R.W. Schwartz, Appl. Phys. Lett. 89, 87 (2006)

    Google Scholar 

  15. Y.Q. Tan, J.L. Zhang, W.T. Hao, G. Chen, W.B. Su, C.L. Wang, Mater. Chem. Phys. 124, 1100 (2010)

    Article  CAS  Google Scholar 

  16. Z. Yang, P. Liang, L. Yang, P. Shi, X. Chao, Z. Yang, J. Mater. Sci. Mater. 26, 1959 (2015)

    Article  CAS  Google Scholar 

  17. L. Yang, X. Chao, Z. Yang, N. Zhao, L. Wei, Z. Yang, Ceram. Int. 42, 2526 (2016)

    Article  CAS  Google Scholar 

  18. L. Yang, G. Huang, T. Wang, H. Hao, Y. Tian, Ceram. Int. 42, 9935 (2016)

    Article  CAS  Google Scholar 

  19. L. Sun, Z. Wang, W. Hao, E. Cao, Y. Zhang, H. Peng, J. Alloys Compd. 651, 283 (2015)

    Article  CAS  Google Scholar 

  20. V.S. Saji, H.C. Choe, Thin Solid Films 517, 3896 (2009)

    Article  CAS  Google Scholar 

  21. F. Luo, J. He, J. Hu, Y.H. Lin, J. Am. Ceram. Soc. 93, 3043 (2010)

    Article  CAS  Google Scholar 

  22. S. Sharma, S.S. Yadav, M.M. Singh, K.D. Mandal, J. Adv. Dielectr. 04, 1450030 (2014)

    Article  CAS  Google Scholar 

  23. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 1 (2004)

    Google Scholar 

  24. P. Gautam, A. Khare, S. Sharma, N.B. Singh, K.D. Mandal, Prog. Nat. Sci. Mater. Int. 26, 567 (2016)

    Article  CAS  Google Scholar 

  25. M. M. Ahmad and K. Yamada, J. Appl. Phys. 115 (2014).

  26. M.M. Ahmad, E. Al-Libidi, A. Al-Jaafari, S. Ghazanfar, K. Yamada, Appl. Phys. A 116, 1299 (2014)

    Article  CAS  Google Scholar 

  27. V. Kumar, S. Pandey, A. Kumar, M.K. Verma, S. Singh, V.S. Rai, D. Prajapati, T. Das, A. Sharma, C.L. Prajapat, A. Gangwar, K.D. Mandal, J. Mater. Res. Technol. 9, 12936 (2020)

    Article  CAS  Google Scholar 

  28. V. S. Rai, S. Pandey, V. Kumar, M. K. Verma, A. Kumar, S. Singh, D. Prajapati, and K. D. Mandal, J. Mater. Sci. Mater. Electron. 12, (2020).

  29. T. T. Carol T, J. Mohammed, R. Bhargava, S. Khan, S. Mishra, S. K. Godara, and A. K. Srivastava, Mater. Chem. Phys. 248, 122933 (2020).

  30. R.K. Nimat, R.S. Joshi, S.H. Pawar, J. Alloys Compd. 466, 341 (2008)

    Article  CAS  Google Scholar 

  31. Y. Zhao, B. Yang, Q. Wu, Y. Zhou, F. Guo, and S. Zhao, Nanoscale (2021).

  32. L. Singh, M. Sheeraz, M.N. Chowdhury, U.S. Rai, S.S. Yadava, Y.S. Park, S.V. Singh, Y. Lee, J. Mater. Sci. Mater. 29, 10082 (2018)

    Article  CAS  Google Scholar 

  33. S. Pandey, V. Kumar, V.K. Sharma, K.D. Mandal, Mater. Chem. Phys. 253, 123384 (2020)

    Article  CAS  Google Scholar 

  34. M. Claros, M. Setka, Y.P. Jimenez, S. Vallejos, Nanomaterials 10, 1 (2020)

    Article  CAS  Google Scholar 

  35. V. Kumar, A. Kumar, M. K. Verma, S. Singh, S. Pandey, V. S. Rai, D. Prajapati, T. Das, N. B. Singh, and K. D. Mandal, Mater. Chem. Phys. 245 (2020).

  36. S. Jaiswar, K.D. Mandal, J. Phys. Chem. C 121, 19586 (2017)

    Article  CAS  Google Scholar 

  37. S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Mater. Res. 19, 1 (2016)

    Article  CAS  Google Scholar 

  38. S.B.R.S. Adnan, N.S. Mohamed, Ceram. Int. 40, 11441 (2014)

    Article  CAS  Google Scholar 

  39. M. Veith, S. Ren, M. Wittmar, H. Bolz, J. Solid State Chem. 182, 2930 (2009)

    Article  CAS  Google Scholar 

  40. M. M. Costa, G. F. M. Pires, A. J. Terezo, M. P. F. Graa, and A. S. B. Sombra, J. Appl. Phys. 110 (2011).

  41. A. Kumar, S.S. Yadava, P. Gautam, A. Khare, K.D. Mandal, J. Electroceram. 42, 47 (2019)

    Article  CAS  Google Scholar 

  42. R. Jana, J. Datta, S. Sil, A. Dey, B. Pal, A. Biswas, and P. P. Ray, Mater. Res. Express 6 (2019).

Download references

Acknowledgements

The author is grateful to the Central Instrument Facility Centre (CIFC) IIT (BHU) Varanasi for providing SEM, TEM, AFM, EDX, and XPS facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Mandal.

Ethics declarations

Conflict of interest

The authors state that there is no brawl among them concerning the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, D., Rai, V.S., Pandey, S. et al. Studies of microstructural, dielectric, and impedance spectroscopic properties of Bi0.617Y0.05Cu3Ti4O12 ceramic synthesized through semi-wet route. J Mater Sci: Mater Electron 32, 26371–26383 (2021). https://doi.org/10.1007/s10854-021-07005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07005-y

Navigation