Skip to main content
Log in

Preparation, dielectric and thermomechanical properties of a novel epoxy resin system cured at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A new kind of bisphenol A-type epoxy resin (E51) system cured at room temperature was prepared using ether bond- and fluorine-containing aromatic diamine, including 4,4′-(Hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline (HFBAPP) and 2,2-Bis[4-(4-aminophenoxy)phenyl]propane (BAPP), and acrylic acid (HAA) as hardeners. The curing behavior of epoxy resin was investigated by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) Spectroscopy. The thermal properties, dynamic thermomechanical properties, tensile properties, and dielectric properties of the cured epoxy resin at room temperature were evaluated with thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), universal tensile testing machine, and vector network analyzer, respectively. The surface morphology of the tensile fracture specimen was observed by scanning electron microscope (SEM). The results showed that the curing reaction for this kind of epoxy resin system can be conducted at room temperature without external heating. Compared to BAPP and 4,4′-Diaminodiphenyl methane (DDM), the cured E51/HFBAPP + HAA system demonstrated the best comprehensive properties, such as high thermal stability, high glass transition temperature and storage modulus, high tensile strength and modulus, and low dielectric constant and dielectric loss values at 2–18.3 GHz, which are mainly attributed to the introduction of flexible ether bonds and CF3 groups into crosslinked epoxy network. SEM testing confirmed that E51/HFBAPP + HAA and E51/BAPP + HAA systems displayed good toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Zhang, L. Li, D. Shi, J. Colloid. Interf. Sci. 594, 791–801 (2021)

    Article  CAS  Google Scholar 

  2. D. Wu, L. Wu, J. Wang, Mater. Chem. Phys. 128, 274–282 (2011)

    Article  CAS  Google Scholar 

  3. B. De, N. Karak, J. Chem. Sci. 126, 587–595 (2014)

    Article  CAS  Google Scholar 

  4. J. Wan, C. Li, Z.-Y. Bu, Chem. Eng. J. 188, 160–172 (2012)

    Article  CAS  Google Scholar 

  5. H. Gu, C. Ma, J. Gu, J. Mater. Chem. C. 4, 5890–5906 (2016)

    Article  CAS  Google Scholar 

  6. F. Xu, Y. Cui, D. Bao, Chem. Eng. J. 388, 124287 (2020)

    Article  CAS  Google Scholar 

  7. G. Lian, C.-C. Tuan, L. Li, Chem. Mater. 28, 6096–6104 (2016)

    Article  CAS  Google Scholar 

  8. S.M. Jee, C.H. Ahn, J.H. Park, Compos. Part B Eng. 202, 108438 (2020)

    Article  CAS  Google Scholar 

  9. X.D. Li, J.C. Feng, S. Zhang, J. Appl. Polym. Sci. 138, 49887 (2021)

    Article  CAS  Google Scholar 

  10. Z. Wang, X. Zhang, L. Weng, J. Mater. Sci-Mater. El. 30, 5936–5946 (2019)

    Article  CAS  Google Scholar 

  11. G. Maier, Prog. Polym. Sci. 26, 3–65 (2001)

    Article  CAS  Google Scholar 

  12. Q. Chen, R. Xu, J. Zhang, Macromol. Rapid. Comm. 26, 1878–1882 (2010)

    Article  Google Scholar 

  13. S. Chen, X. Zhang, Q. Wang, J. Macromol. Sci. B. 56, 161–169 (2017)

    Article  CAS  Google Scholar 

  14. C. Jr, G.Z. Li, H.S. Cho, J. Inorg. Organomet. P. 16, 43–59 (2006)

  15. M. Zhang, H. Yan, C. Liu, Polym. Compos. 36, 1840–1848 (2015)

    Article  CAS  Google Scholar 

  16. Y. Lu, S. Zhang, Z. Geng, New. J. Chem. 41, 3089–3096 (2017)

    Article  CAS  Google Scholar 

  17. M. Imran, A. Rahaman, S. Pal, Mater. Today 22, 2469–2474 (2020)

    CAS  Google Scholar 

  18. M. Palumbo, G. Donzella, E. Tempesti, J. Appl. Polym. Sci. 60, 47–53 (1996)

    Article  CAS  Google Scholar 

  19. V.H. Dalvi, P.J. Rossky, Proc. Natl. Acad. Sci. USA 107, 13603–13607 (2010)

    Article  CAS  Google Scholar 

  20. T. Ma, J. Ma, J. Zhang, Polymer 206, 122828 (2020)

    Article  CAS  Google Scholar 

  21. Q. Jiang, J. Hao, Y. Wei, Polym. Advan. Technol. 28, 658–664 (2016)

    Article  Google Scholar 

  22. P. Lopes, O. Guvench, A.D. Mackerell, Methods. Mol. Biol. 1215, 47–71 (2015)

    CAS  Google Scholar 

  23. S.I. Noro, T. Nakamura, Npg. Asia Mater. 9, e433 (2017)

    Article  Google Scholar 

  24. Z. Geng, Y. Lu, S.L. Zhang, Polym. Int. 63, 333–337 (2014)

    Article  CAS  Google Scholar 

  25. W. Chunarrom, H. Manuspiya, Polym. Chem. UK 12, 1136–1146 (2021)

    Article  CAS  Google Scholar 

  26. Z.G. Fan, S.W. Liu, Z.G. Chi, ACTA Polym. Sin. 52, 750–761 (2021)

    Google Scholar 

  27. Z. He, J.W. Xie, Z.W. Liao, Prog. Org. Coat. 151, 106030 (2021)

    Article  CAS  Google Scholar 

  28. J. Zhang, H. Dong, L. Tong, Thermochim. Acta. 549, 63–68 (2012)

    Article  CAS  Google Scholar 

  29. Y.L. Xu, A.Q. Dayo, J. Wang, Mater. Chem. Phys. 203, 293–301 (2017)

    Article  Google Scholar 

  30. L. Tao, H. Yang, J. Liu, Polymer 50, 6009–6018 (2009)

    Article  CAS  Google Scholar 

  31. Y. Guo, F. Chen, Y. Han, J. Polym. Res. 25, 27 (2018)

    Article  Google Scholar 

  32. I. Beverte, U. Cabulis, S. Gaidukovs, Polymers 13, 1173 (2021)

    Article  CAS  Google Scholar 

  33. X. Zhang, X. Lu, L. Qiao, E-Polymers 19, 489–498 (2019)

    Article  CAS  Google Scholar 

  34. Q. Bao, B. Wang, Y. Liu, Polym. Degrad. Stabil. 172, 109055 (2020)

    Article  CAS  Google Scholar 

  35. M. Xu, Z. Ge, X. Lu, Polym. Int. 66, 1318–1323 (2017)

    Article  CAS  Google Scholar 

  36. L. Li, Y. Xu, J. Che, Polym. Advan. Technol. 30, 120–127 (2019)

    Article  CAS  Google Scholar 

  37. W.B. Liu, Q.H. Qiu, J. Wang, Polym. 49, 4399–4405 (2008)

    Article  CAS  Google Scholar 

  38. C. Saurabh, P. Surekha, K. Devendra, J. Appl. Polym. Sci. 131, 5060–5063 (2014)

    Google Scholar 

  39. H. Jin, B. Yang, F.L. Jin, J. Ind. Eng. Chem. 25, 9–11 (2015)

    Article  CAS  Google Scholar 

  40. S.F. Teh, T. Liu, L. Wang, Compos. Part. A-Appl. S. 36, 1167–1173 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially sponsored by the National Natural Science Foundation of China (Project No.51773048) and Fundamental Research Funds for the Central Universities (Project No.HEUCFP201724).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongcheng Pan, Jun Wang or Wen-bin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Wang, T., Cai, W. et al. Preparation, dielectric and thermomechanical properties of a novel epoxy resin system cured at room temperature. J Mater Sci: Mater Electron 32, 24902–24909 (2021). https://doi.org/10.1007/s10854-021-06948-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06948-6

Navigation