Skip to main content

Advertisement

Log in

Fabrication, physical, thermal and optical properties of oxyfluoride glasses doped with rare earth oxides

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The impact of the addition of different rare earth oxides such as Ho2O3, Nd2O3, Sm2O3, and Yb2O3 on the physical, structural, thermal, and optical properties of the prepared NaO2–CaF2 bismuth borate glasses was examined. FTIR spectra of the glass samples were performed in the range of 400–4000 cm−1. UV–visible–NIR absorption spectral measurements were carried out of the range 200–2500 nm. Differential thermal analysis and the thermal expansion data of the prepared glasses were measured. FTIR the spectra of the proposed glasses showed that the rare earth mainly led to formation of BiO6 and BO4 groups as the intensity of peaks related to them increase with the addition of rare earth. An increase in the density of the glasses was noticed with the substitution of Na2O by rare earth oxide. Addition of mol% Yb2O3 to glasses leads to increase in the ionic concentration, polaron radius and interionic distance of glasses and decrease the field strength and density. The obtained metallization values fluctuated between 0.3153 and 0.3570. The molar polarizability (αm) and molar electronic polarizability (αme) were enhanced with the increase of Yb2O3 content. The values of dielectric constants (ε and εopt) were decreased with in Sm2O3 and Nd2O3 glasses, whereas they increased in Ho2O3 glass. The Ts values were increased with the increase of rare earth oxide and Yb2O3 content. The optical energy gap decreases with the addition of rare earth oxide and Yb2O3 concentration. The refractive indices of all studied glasses are relatively high, thus one can concluded that the present glasses can be used as a candidate for optoelectronic, photoelectronic, and communications instruments and non-linear optical devices. The addition of Yb ions leads to decrease the emission and excitation intensity which may be attributed to concentration quenching effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.A. Kaminskii, L.K. Aminov, V.L. Ermolaev, Fizika i spektroskopiya lazernykh kristallov (Physicsand Spectroscopy of Laser Crystals), Moscow: Nauka, 1986

  2. B. Henderson, R.H. Bartram, Crystal-Field Engineering of Solid State Lasers Materials (Cambridge University, Cambridge, 2000)

    Book  Google Scholar 

  3. K. Ren, X. Ren, R. Li, J. Zhou, D. Liu, R. Kay, Acceptor impurity” mode in 1-D holographic photonic crystals achieved by controlling polarization state of the incident beam. Opt. Commun. 231, 357–364 (2004)

    Article  CAS  Google Scholar 

  4. S.K. Mahamudak, P. Swapna, A. Packiyaraj, G.S. Rao, V. Prakash, Visible red, NIR and Mid-IR emission studies of Ho3+ doped Zinc Alumino Bismuth Borate glasses. Opt. Mater. 36, 362–371 (2013)

    Article  CAS  Google Scholar 

  5. K. Swapna, S. Mahamuda, A.S. Rao, S. Shakya, T. Sasikala, D. Haranath, G.V. Prakash, Optical studies of Sm3+ ions doped Zinc Alumino Bismuth Borate glasses. Spectrochim. Acta Part A 125, 53–60 (2014)

    Article  CAS  Google Scholar 

  6. A. Terczynska-Madej, K. Katarzyna Cholewa, M. Laczka, The effect of silicate network modifiers on colour and electron spectra of transition metal ions. Opt. Mater. 32, 1456–1462 (2010)

    Article  CAS  Google Scholar 

  7. P. Venka Reddy, C. Laxami Kanth, V. Prashanth Kumar, N. Veerraiah, P. Kistaiah, Optical and thermoluminescence properties of R2O–RF–B2O3 glass systems doped with MnO. J. Non-Cryst. Solids 351, 3752–3759 (2005)

    Article  CAS  Google Scholar 

  8. R.P.S. Chakaradhra, B. Yasoda, J.L. Rao, N.O. Gopal, EPR and optical studies of Mn2+ ions in Li2O–Na2O–B2O3 glasses—an evidence of mixed alkali effect. J. Non-Cryst. Solids 353, 2355–2362 (2007)

    Article  CAS  Google Scholar 

  9. G. Fuxi, Optical and Spectroscopic Properties of Glass (Springer, Berlin, 1992)

    Google Scholar 

  10. A.K. Varshneya, Fundamentals of Inorganic Glasses (Elsevier, Amsterdam, 2013)

    Google Scholar 

  11. C.F. Yang, Q.Y. Zhang, T. Li, D.M. Shi, Z.H. Jiang, Laser-diode-excited intense luminescence and green-upconversion in erbium-doped bismuth–germanate–lead glasses. Spectrochim. Acta A69, 41 (2008)

    Article  CAS  Google Scholar 

  12. M. Lio, L. Hu, Y. Fang, J. Zhang, H. Sun, S. Xu, L. Zhang, Spectrochim. Acta A68, 531 (2007)

    Article  CAS  Google Scholar 

  13. C. Göroller-Walrand, Binnemans, in Handbook on the Physics and Chemistry of Rare Earths, vol. 25, ed. by K.A. Gschneidner, L. Eynng (North-Holland Publishers, Amsterdam, 1998), pp. 101–246

    Google Scholar 

  14. D. Rajesh, M. DhamodharaNadiu, Y.C. Ratnakaram, A. Balakrishna, Ho3+ Doped strontium-aluminum-bismuth- borate glasses for green light emission. Lumin. 29, 854–860 (2014)

    Article  CAS  Google Scholar 

  15. P. Krogh-Moe, Chem. Glasses 3, 101 (1962)

    CAS  Google Scholar 

  16. R.L. Mozzi, B.E. Warren, J. Appl. Crystallogr. 3, 251–257 (1962)

    Article  Google Scholar 

  17. S. Hazra, S. Mandal, Phys. Rev. B 56, 8021–8025 (1997)

    Article  CAS  Google Scholar 

  18. M. Naftally, A. Jha, J. Appl. Phys. 87, 2098 (2000)

    Article  Google Scholar 

  19. J.E. Marion, M.J. Weber, Eur. J. Solid State Inorg. 28, 271 (1991)

    CAS  Google Scholar 

  20.  M. Farouk, A. Samir, F. Metawe, M. Elokr, Optical absorption and structural studies of bismuth borate glasses containing Er3+ ions. J. Non-Cryst. Solids 371, 14–21 (2013)

    Article  CAS  Google Scholar 

  21. A. Bishay, C. Maghrabi, Properties of bismuth glasses in relation to structure. Phys. Chem. Glasses 10, 1–11 (1969)

    CAS  Google Scholar 

  22. R.J. Betsch, W.B. White, Spectrochim. Acta 34A, 505 (1977)

    Google Scholar 

  23. M.H. Shaaban, A.A. Ali, Density electrical and optical properties of yttrium-containing tellurium bismuth borate glasses. J. Electron. Mater. 43, 4023–4032 (2014)

    Article  CAS  Google Scholar 

  24. J. Krogh-Moe, Phys. Chem. Glasses 10(2), 46 (1969)

    Google Scholar 

  25. C. Stehle, C. Vira, D. Vira, D. Hogan, S. Feller, M. Affatigato, Phys. Chem. Glasses 39, 83 (1998)

    CAS  Google Scholar 

  26. S. Feller, M. Affatigato, Phys. Chem. Glasses 40, 326 (1999)

    Google Scholar 

  27. Y. Dimitriev, V. Michailova, in Proceedings of the XV International Congress on Glass, vol. 3 (Madrid, 1992), p 293

  28. A.A. Kharlamov, R.M. Almeida, J. Heo, J. Non-Cryst. Solids 202, 233 (1996)

    Article  CAS  Google Scholar 

  29. P. Pascuta, L. Pop, S. Rada, M. Bosca, E. Culea, The local structure of bismuth borate glasses doped with europium ions evidenced by FT-IR spectroscopy. J. Mater. Sci. 19, 424–428 (2008)

    CAS  Google Scholar 

  30. P. Kaur, K.J. Singh, M. Kurudirek, S. Thakur, Spectrochim. Acta Part A 223, 117309 (2019)

    Article  CAS  Google Scholar 

  31. A. Edukondalu, A. Hameed, B. Kavitha, R.V. Kumar, K.S. Kumar, Mater. Today 2, 913–917 (2015)

    Google Scholar 

  32. A.A. Ali, Y.S. Rammah, R. El-Mallawany, D. Souri, FTIR and UV spectra of pentaternary borate glasses. Measurement 105, 72–77 (2017)

    Article  Google Scholar 

  33. S. Thakur, V. Thakur, A. Kaur, L. Singh, Structural, optical and thermal properties of nickel doped bismuth borate glasses. J. Non-Cryst. Solids 512, 60–71 (2019)

    Article  CAS  Google Scholar 

  34. V. Sharma, S.P. Singh, G.S. Mudahar, K.S. Thind, New J. Glass Ceram. 2, 128–132 (2012)

    Article  CAS  Google Scholar 

  35. P. Pascuta, G. Borodi, E. Culea, Influence of europium ions on structure and crystallization properties of bismuth borate glasses and glass ceramics. J. Non-Cryst. Solids 354, 5475 (2008)

    Article  CAS  Google Scholar 

  36. P.P. Pawar, S.R. Munishwar, R.S. Gedam, Physical and optical properties of Dy3+/Pr3+ Co-doped lithium borate glasses for W-LED. J. Alloys Compds. 660, 347–355 (2016)

    Article  CAS  Google Scholar 

  37. C. Pereira, J. Barbosa, F.C. Cassanjes, R.R. Gonҫalves, S.J.L. Riberiro, G. Poirier, Thermal, structural and optical properties of new TeO2-Sb2O3-GeO2 ternary glasses. Opt. Mater. 62, 95–103 (2016)

    Article  CAS  Google Scholar 

  38. N.J. Kim, Y.H. La, S.H. Im, W.-T. Han, B.K. Ryu, Effect of ZnO on physical and optical properties of Bismuth Borate. Electron. Mater. Lett. 5, 209–212 (2009)

    Article  CAS  Google Scholar 

  39. A.A. Ali, M.H. Shaaban, A. Abdallah, Spectroscopic studies of ZnO borate–tellurite glass doped with Eu2O3. J. Market. Res. 7, 240–247 (2018)

    CAS  Google Scholar 

  40. V.M. Fokin, E.D. Zanotto, J.W.P. Schmelzer, Homogeneous nucleation versus glass transition temperature of silicate glasses. J. Non-Cryst. Solids 321, 52–65 (2003)

    Article  CAS  Google Scholar 

  41. F. Lofaj, R. Satet, M.J. Hoffmann, A.R. Arellano Lopez, J. Glass Eur. Ceram. Soc. 24, 3377–3385 (2004)

    Article  CAS  Google Scholar 

  42. T. Hisashige, Y. Yamamura, T. Tsuji, Thermal expansion and Debye temperature of rare earth-doped ceria. J. Alloys Compd. 408–412, 1153–1156 (2006)

    Article  CAS  Google Scholar 

  43. S. Song, Z. Wen, Y. Liu, Development and characterization of Bi2O3-containing glass-ceramic sealants for sodium sulfur battery. J. Non-Cryst. Solids 375, 25–30 (2013)

    Article  CAS  Google Scholar 

  44. R.C.C. Monteiro, A.A.S. Lopes, M.M.R.A. Lima, J.P.B. Veiga, Thermal characteristics and crystallization behavior of zinc borosilicate glasses containing Nb2O5. J. Non-Cryst. Solids 491, 124–132 (2018)

    Article  CAS  Google Scholar 

  45. G. Lakshminarayana, S.O. Baki, A. Lira, I.V. Kityk, U. Caldiño, K.M. Kaky, M.A. Mahdi, Structural, thermal and optical investigations of Dy3+-doped B2O3–WO3–ZnO–Li2O–Na2O glasses for warm white light emitting applications. J. Lumin. 186, 283–300 (2017)

    Article  CAS  Google Scholar 

  46. T.F. Belliveau, D.J. Simkin, On the coordination environment of rare earth ions in oxide glasses calcium titanosilicate and sodium aluminosilicate glasses. J. Non-Cryst. Solids 110, 127–141 (1989)

    Article  CAS  Google Scholar 

  47. V. Dimitrov, S. Sakka, Linear and nonlinear optical properties of simple oxides. II. J. Appl. Phys. 79, 1741–1745 (1996)

    Article  CAS  Google Scholar 

  48. V. Dimitrov, T. Komatsu, Correlation among electronegativity, cation polarizability, optical basicity and single bond strength of simple oxide. J. Solid State Chem. 169, 474–578 (2012)

    Google Scholar 

  49. C. Eevon, M.K. Halimah, A. Zakaria, C.A.C. Azurahanim, M.N. Azlan, M.F. Faznnyn, Linear and nonlinear optical properties of Gd3+ doped zinc borotellurite glasses for all-optical switching applications. Results Phys. 6, 761–766 (2016)

    Article  Google Scholar 

  50. M.K. Halimah, M.F. Faznny, M.N. Azlan, H.A.A. Sidek, Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results Phys. 7, 581–589 (2017)

    Article  Google Scholar 

  51. G. Samdani, M.N. Ramadevudu, Md. Chary, G. Shareefuddin, Physical and spectroscopic studies of Cr3+ doped mixed alkaline earth oxide borate glasses. Mater. Chem. Phys. 186, 382–389 (2017)

    Article  CAS  Google Scholar 

  52. D.B. Tanner, Optical Effects in Solids (Cambridge University Press, 2019). https://doi.org/10.1017/9781316672778

  53. V. Dimitrov, T. Komatsu, Classification of oxide glasses. J. Solid State Chem. 178, 831–846 (2005)

    Article  CAS  Google Scholar 

  54. J.A. Duffy, M.D. Ingram, Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses. J. Am. Chem. Soc. 93, 6448 (1971)

    Article  CAS  Google Scholar 

  55. R.R. Reddy, Y.N. Ahammed, P.A. Azeem, K.R. Gopal, T.V.R. Rao, Electronic polarizability and optical basicity properties of oxide glasses through average electronegativity. J. Non-Cryst. Solids 286, 169–180 (2001)

    Article  CAS  Google Scholar 

  56. V. Dimitrov, T. Komatsu, Electronic polarizability, optical basicity and single bond strength of oxide glasses. J. Chem. Technol. Metall. 48(6), 549–554 (2013)

    CAS  Google Scholar 

  57. Y.R. Rao, K.K. Goud, E.R. Kumar, M.C.S. Reddy, B.A. Rao, Upconversion luminescence in Er3+/Yb3+ codoped lead bismuth indium borate glasses. Int. J. Recent Dev. Eng. Technol. 3(1), 122–130 (2014)

    Google Scholar 

  58. P. Damas, J. Coelho, G. Hungerford, N.S. Hussain, Structural studies of lithium boro tellurite glasses doped with praseodymium and samarium oxides. Mater. Res. Bull. 47, 3489–3494 (2012)

    Article  CAS  Google Scholar 

  59. M.H. Shaaban, A.A. Ali, M.K. El-Nimr, The AC conductivity of tellurite glasses doped with Ho2O3. Mater. Chem. Phys. 96, 433–438 (2006)

    Article  CAS  Google Scholar 

  60. J.A. Duffy, M.D. Ingram, Comments on the application of optical basicity to glass. J. Non-Cryst. Solids 144, 76–80 (1992)

    Article  CAS  Google Scholar 

  61. G.H. Sigel, R.J. Ginther, Glass Technol. 9, 66 (1968)

    CAS  Google Scholar 

  62. L. Cook, K.H. Mader, J. Am. Ceram. Soc. 65, 109 (1982)

    Article  Google Scholar 

  63. V. Naresh, N. Lee, Ceram. Int. Part B 45(17), 22649–22659 (2019)

    Article  CAS  Google Scholar 

  64. J. Tauc, in Amorphous and liquid semiconductors, ed. By J. Tauc (Plenum Press, New York, 1974)

  65. N.F. Mott, E.A. Davies, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  66. S. Singh, S. Prasher, The etching and structural studies of gamma irradiated induced effects in CR-39 plastic track recorder. Nucl. Instrum. Methods B 222, 518–524 (2004)

    Article  CAS  Google Scholar 

  67. L.E. Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rudil, E.V. Santiago, An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films. Appl. Surf. Sci. 254, 412–415 (2007)

    Article  CAS  Google Scholar 

  68. D. Souri, Effect of molybdenum tri-oxide molar ratio on the optical and some physical properties of tellurite–vanadate–molybdate glasses. Measurement 44, 717–721 (2011)

    Article  Google Scholar 

  69. D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 119, 273–279 (2015)

    Article  CAS  Google Scholar 

  70. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 79, 1736–1740 (1996)

    Article  CAS  Google Scholar 

  71. N. Elkhoshkhany, R. Abbas, R. El-Mallawany, A.J. Fraih, Optical properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceram. Int. 40, 14477–14481 (2014)

    Article  CAS  Google Scholar 

  72. R. El-Mallawany, Y.S. Rammah, A. El Adawy, Z. Wassel, Optical and thermal properties of some tellurite glasses. Am. J. Opt. Photonics 5, 11–76 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was support of Taif University Researchers Supporting Project Number (TURSP-2020-/84), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, M.H., Rammah, Y.S., Ahmed, E.M. et al. Fabrication, physical, thermal and optical properties of oxyfluoride glasses doped with rare earth oxides. J Mater Sci: Mater Electron 32, 18951–18967 (2021). https://doi.org/10.1007/s10854-021-06410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06410-7

Navigation