Skip to main content
Log in

Facile in situ co-precipitation synthesis of CuO–NiO/rGO nanocomposite for lithium-ion battery anodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, using a modified in situ co-precipitation approach, CuO–NiO nanoparticles were confined in reduced graphene oxide (rGO) layers in order to synthesize CuO–NiO/rGO nanocomposite for use as lithium-ion battery anodes. For better comparison between electrochemical properties, CuO/rGO and NiO/rGO nanocomposites were also synthesized. The initial discharge capacity and coulombic efficiency of the resulting CuO–NiO/rGO nanocomposite electrode were found to be 990 mAh/g and 91.5% at a current density of 100 mA/g, respectively, outperforming those of CuO/rGO and NiO/rGO nanocomposites. Our investigations indicated that the intimate interaction of nanoparticles with the rGO as a host material with large surface area and excellent chemical stability was responsible for the high capacity obtained. The rate performance of the nanocomposite electrodes was also carried out, revealing their good cycling properties under high current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data will be available upon request.

Abbreviations

LIB:

Lithium-ion battery

TMOs:

Transition metal oxides

rGO:

Reduced graphene oxide

SEI:

Solid-electrolyte interphase

References

  1. A. Yadav, B. De, S.K. Singh, P. Sinha, K.K. Kar, Facile development strategy of a single carbon-fiber-based all-solid-state flexible lithium-ion battery for wearable electronics. ACS Appl. Mater. Interfaces 11(8), 7974–7980 (2019)

    Article  CAS  Google Scholar 

  2. D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015)

    Article  CAS  Google Scholar 

  3. M.A. Pellow, C.J. Emmott, C.J. Barnhart, S.M. Benson, Hydrogen or batteries for grid storage? A net energy analysis. Energy Environ. Sci. 8(7), 1938–1952 (2015)

    Article  CAS  Google Scholar 

  4. A. Bilich, K. Langham, R. Geyer, L. Goyal, J. Hansen, A. Krishnan et al., Life cycle assessment of solar photovoltaic microgrid systems in off-grid communities. Environ. Sci. Technol. 51(2), 1043–1052 (2017)

    Article  CAS  Google Scholar 

  5. F. Pu, C. Kong, J. Lv, W. Zhang, X. Zhang, S. Yang, et al., CuO ultrathin nanosheets decorated reduced graphene oxide as a high-performance anode for lithium-ion batteries. J. Alloy. Compd. 805, 355–362 (2019)

    Article  CAS  Google Scholar 

  6. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, A. Matsuda, Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high-performance lithium-ion batteries. Prog. Energy Combust. Sci. 75, 100786 (2019)

    Article  Google Scholar 

  7. K. Zhang, W. Hong, P. Gao, R. Ding, E. Liu, Orthorhombic CaFe2O4 microrod anode for lithium–ion battery. Int. J. Hydrogen Energy 45, 22160–22165 (2020)

    Article  CAS  Google Scholar 

  8. G. Ananya, N. Pranati, S. Ramaprabhu, Investigation of the role of Cu2O beads over the wrinkled graphene as an anode material for lithium-ion battery. Int. J. Hydrogen Energy 41(6), 3974–3980 (2016)

    Article  CAS  Google Scholar 

  9. R. Liu, D. Li, C. Wang, N. Li, Q. Li, X. Lü, G. Wu, Core–shell structured hollow SnO2–polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries. Nano Energy 6, 73–81 (2014)

    Article  CAS  Google Scholar 

  10. P.L.S.G. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496 (2000)

    Article  CAS  Google Scholar 

  11. A. Debart, L. Dupont, P. Poizot, J.B. Leriche, J.M. Tarascon, A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J. Electrochem. Soc. 148(11), A1266–A1274 (2001)

    Article  CAS  Google Scholar 

  12. Y. Wang, G. Cao, Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 20(12), 2251–2269 (2008)

    Article  CAS  Google Scholar 

  13. Y.K. Sun, S.T. Myung, B.C. Park, J. Prakash, I. Belharouak, K. Amine, High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8(4), 320 (2009)

    Article  CAS  Google Scholar 

  14. J. Li, Y. Zhang, L. Li, Y. Wang, L. Zhang, B. Zhang, F. Wang, Formation of dumbbell and sphere-like CuO as high-performance anode materials for lithium-ion batteries. Mater. Lett. 261, 127058 (2020)

    Article  CAS  Google Scholar 

  15. C. Wang, Y. Zhao, D. Su, C. Ding, L. Wang, D. Yan, et al., Synthesis of NiO nano octahedron aggregates as high-performance anode materials for lithium ion batteries. Electrochim. Acta 231, 272–278 (2017)

    Article  CAS  Google Scholar 

  16. T. Jiang, F. Bu, X. Feng, I. Shakir, G. Hao, Y. Xu, Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11(5), 5140–5147 (2017)

    Article  CAS  Google Scholar 

  17. C. Zhang, S. Liu, Y. Qi, F. Cui, X. Yang, Conformal carbon coated TiO2 aerogel as superior anode for lithium-ion batteries. Chem. Eng. J. 351, 825–831 (2018)

    Article  CAS  Google Scholar 

  18. P. Bhattacharya, J.H. Lee, K.K. Kar, H.S. Park, Carambola-shaped SnO2 wrapped in carbon nanotube network for high volumetric capacity and improved rate and cycle stability of lithium-ion battery. Chem. Eng. J. 369, 422–431 (2019)

    Article  CAS  Google Scholar 

  19. R. Hu, H. Zhang, Y. Bu, H. Zhang, B. Zhao, C. Yang, Porous Co3O4 nanofibers surface-modified by reduced graphene oxide as a durable, high-rate anode for lithium-ion battery. Electrochim. Acta 228, 241–250 (2017)

    Article  CAS  Google Scholar 

  20. Y.W. Cheng, C.H. Chen, S.W. Yang, Y.C. Li, B.L. Peng, C.C. Chang et al., Freestanding three-dimensional CuO/NiO core–shell nanowire arrays as high-performance lithium-ion battery anode. Sci. Rep. 8(1), 18034 (2018)

    Article  CAS  Google Scholar 

  21. W. Guo, W. Sun, Y. Wang, Multilayer CuO@ NiO hollow spheres: microwave-assisted metal–organic-framework derivation and highly reversible structure-matched stepwise lithium storage. ACS Nano 9(11), 11462–11471 (2015)

    Article  CAS  Google Scholar 

  22. A. Khalil, B.S. Lalia, R. Hashaikeh, Nickel oxide nanocrystals as a lithium-ion battery anode: structure–performance relationship. J. Mater. Sci. 51(14), 6624–6638 (2016)

    Article  CAS  Google Scholar 

  23. M.M. Li, Y. Wang, C.C. Yang, Q. Jiang, In situ grown Co3O4 nanocubes on N-doped graphene as a synergistic hybrid for applications in nickel metal hydride batteries. Int. J. Hydrogen Energy 43(39), 18421–18435 (2018)

    Article  CAS  Google Scholar 

  24. B. De, S. Banerjee, K.D. Verma, T. Pal, P.K. Manna, K.K. Kar, Transition metal oxides as electrode materials for supercapacitors, in Handbook of Nanocomposite Supercapacitor Materials II. ed. by K.K. Kar (Springer, Cham, 2020), pp. 89–111

    Chapter  Google Scholar 

  25. X. Cui, B. Song, S. Cheng, Y. Xie, Y. Shao, Y. Sun, Synthesis of carbon nanotube (CNT)-entangled CuO nanotube networks via CNT-catalytic growth and in situ thermal oxidation as additive-free anodes for lithium-ion batteries. Nanotechnology 29(3), 035603 (2017)

    Article  CAS  Google Scholar 

  26. R. Dang, X. Jia, X. Liu, H. Ma, H. Gao, G. Wang, Controlled synthesis of hierarchical Cu nanosheets@ CuO nanorods as high-performance anode material for lithium-ion batteries. Nano Energy 33, 427–435 (2017)

    Article  CAS  Google Scholar 

  27. Z. Ma, K. Rui, Q. Zhang, Y. Zhang, M. Du, D. Li, W. Huang, Self-templated formation of uniform F‐CuO hollow octahedra for lithium-ion batteries. Small 13(10), 1603500 (2017)

    Article  CAS  Google Scholar 

  28. C. Wang, Q. Li, F. Wang, G. Xia, R. Liu, D. Li, G. Wu, Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries. ACS Appl. Mater. Interfaces 6(2), 1243–1250 (2014)

    Article  CAS  Google Scholar 

  29. S. Xiao, D. Pan, L. Wang, Z. Zhang, Z. Lyu, W. Dong, H. Li, Porous CuO nanotubes/graphene with sandwich architecture as high-performance anodes for lithium-ion batteries. Nanoscale 8(46), 19343–19351 (2016)

    Article  CAS  Google Scholar 

  30. J. Wang, Q. Zhang, X. Li, B. Zhang, L. Mai, K. Zhang, Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy 12, 437–446 (2015)

    Article  CAS  Google Scholar 

  31. X. Cui, Y. Wang, Z. Chen, H. Zhou, Q. Xu, P. Sun, Y. Lu, Preparation of pompon-like MnO/carbon nanotube composite microspheres as anodes for lithium-ion batteries. Electrochim. Acta 180, 858–865 (2015)

    Article  CAS  Google Scholar 

  32. R. Wu, D.P. Wang, X. Rui, B. Liu, K. Zhou, A.W. Law, Z. Chen, In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium‐ion batteries. Adv. Mater. 27(19), 3038–3044 (2015)

    Article  CAS  Google Scholar 

  33. X. Cui, Y. Wang, Q. Xu, P. Sun, X. Wang, T. Wei, Y. Sun, Carbon nanotube entangled Mn3O4 octahedron as anode materials for lithium-ion batteries. Nanotechnology 28(25), 255402 (2017)

    Article  CAS  Google Scholar 

  34. B. Rangasamy, J.Y. Hwang, W. Choi, Multi layered Si–CuO quantum dots wrapped by graphene for high-performance anode material in lithium-ion battery. Carbon 77, 1065–1072 (2014)

    Article  CAS  Google Scholar 

  35. G.D. Park, Y.C. Kang, Superior lithium-ion storage properties of mesoporous CuO–reduced graphene oxide composite powder prepared by a two‐step spray‐drying process. Chem. Eur. J. 21(25), 9179–9184 (2015)

    Article  CAS  Google Scholar 

  36. J. Xu, J. Wu, L. Luo, X. Chen, H. Qin, V. Dravid, C. Jia, Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries. J. Power Sources 274, 816–822 (2015)

    Article  CAS  Google Scholar 

  37. W. Yang, J. Wang, W. Ma, C. Dong, G. Cheng, Z. Zhang, Free-standing CuO nanoflake arrays coated Cu foam for advanced lithium-ion battery anodes. J. Power Sources 333, 88–98 (2016)

    Article  CAS  Google Scholar 

  38. J. Wang, Q. Zhang, X. Li, D. Xu, Z. Wang, H. Guo, K. Zhang, Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium-ion batteries. Nano Energy 6, 19–26 (2014)

    Article  CAS  Google Scholar 

  39. S. Tian, G. Zheng, Q. Liu, M. Ren, J. Yin, Preparation of RGO/NiO anode for lithium-ion batteries. Int. J. Electrochem. Sci. 14, 9459–9467 (2019)

    Article  CAS  Google Scholar 

  40. X. Zhou, J. Shi, Y. Liu, Q. Su, J. Zhang, G. Du, Microwave-assisted synthesis of hollow CuO–Cu2O nanosphere/graphene composite as anode for lithium-ion battery. J. Alloys Compd. 615, 390–394 (2014)

    Article  CAS  Google Scholar 

  41. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)

    Article  CAS  Google Scholar 

  42. R. Jamatia, A. Gupta, B. Dam, M. Saha, A.K. Pal, Graphite oxide: a metal free highly efficient carbocatalyst for the synthesis of 1, 5-benzodiazepines under room temperature and solvent free heating conditions. Green Chem. 19(6), 1576–1585 (2017)

    Article  CAS  Google Scholar 

  43. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Article  CAS  Google Scholar 

  44. X. Chen, N. Zhang, K. Sun, Facile fabrication of CuO mesoporous nanosheet cluster array electrodes with super lithium-storage properties. J. Mater. Chem. 22(27), 13637–13642 (2012)

    Article  CAS  Google Scholar 

  45. S. Saadat, J. Zhu, D.H. Sim, H.H. Hng, R. Yazami, Q. Yan, Coaxial Fe3O4/CuO hybrid nanowires as ultra-fast charge/discharge lithium-ion battery anodes. J. Mater. Chem. A 1(30), 8672–8678 (2013)

    Article  CAS  Google Scholar 

  46. C. Liu, C. Li, K. Ahmed, Z. Mutlu, C.S. Ozkan, M. Ozkan, Template free and binderless NiO nanowire foam for Li-ion battery anodes with long cycle life and ultrahigh rate capability. Sci. Rep. 6, 29183 (2016)

    Article  CAS  Google Scholar 

  47. G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot, J.M. Tarascon, S. Laruelle, Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. J. Power Sources 178(1), 409–421 (2008)

    Article  CAS  Google Scholar 

  48. S.M. Abbas, S.T. Hussain, S. Ali, N. Ahmad, N. Ali, S. Abbas, Z. Ali, Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries. J. Solid-State Chem. 202, 43–50 (2013)

    Article  CAS  Google Scholar 

  49. K.D. Verma, P. Sinha, S. Banerjee, K.K. Kar, Characteristics of electrode materials for supercapacitors, in Handbook of Nanocomposite Supercapacitor Materials. I. ed. by K.K. Kar (Springer, Cham, 2020), pp. 269–285

    Chapter  Google Scholar 

  50. Y.J. Mai, S.J. Shi, D. Zhang, Y. Lu, C.D. Gu, J.P. Tu, NiO–graphene hybrid as an anode material for lithium-ion batteries. J. Power Sources 204, 155–161 (2012)

    Article  CAS  Google Scholar 

  51. Y. Zhang, M. Xu, F. Wang, X. Song, Y. Wang, S. Yang, CuO necklace: Controlled synthesis of a metal oxide and carbon nanotube heterostructure for enhanced lithium storage performance. J. Phys. Chem. C 117(23), 12346–12351 (2013)

    Article  CAS  Google Scholar 

  52. J. Zhang, B. Wang, J. Zhou, R. Xia, Y. Chu, J. Huang, Preparation of advanced CuO nanowires/functionalized graphene composite anode material for lithium-ion batteries. Materials 10(1), 72 (2017)

    Article  CAS  Google Scholar 

  53. Y. Liu, W. Wang, L. Gu, Y. Wang, Y. Ying, Y. Mao, X. Peng, Flexible CuO nanosheets/reduced-graphene oxide composite paper: binder-free anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 5(19), 9850–9855 (2013)

    Article  CAS  Google Scholar 

  54. H. Chen, C.L. Li, N. Li, K.X. Xiang, Z.L. Hu, Facile synthesis of CuO–NiO nanocomposites with high surface areas and their application for lithium-ion batteries. Micro Nano Lett. 8(9), 544–548 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ranjbar-Azad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

By submitting the manuscript, the authors understand that the material presented in this manuscript has not been published before, nor has it been submitted for publication to another journal. The corresponding author attests that this study has been approved by all the co-authors concerned.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar-Azad, M., Behpour, M. Facile in situ co-precipitation synthesis of CuO–NiO/rGO nanocomposite for lithium-ion battery anodes. J Mater Sci: Mater Electron 32, 18043–18056 (2021). https://doi.org/10.1007/s10854-021-06346-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06346-y

Navigation