Skip to main content

Advertisement

Log in

Facile preparation of Cu foam/Sn composite preforms for low-temperature interconnection of high-power devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple and low-cost Cu foam/Sn composite preform was proposed for the low-temperature interconnection of high-power devices. The composite preform was prepared by pressing a Cu foam as the skeleton between two Sn foils as low-melting point metals with different pressures. The composite preform retains the high re-melting temperature superiority of transient liquid phase (TLP) bonding, as well as shortens the reflow time of intermetallic compounds (IMCs). The microstructures of the bondlines and the electrical and mechanical properties of the composite preform pressed at different pressures were studied. After sintering at 260 °C, the interconnection layer becomes denser with the increasing pressures of composite preform, and the bondline is composed of mainly Cu6Sn5, Cu3Sn and Ag3Sn phase. When the pressure of the composite preform increases from 200 to 400 MPa, the electrical resistivity decreases and the shear strength of bonded joints increases. At the pressure of 400 MPa, the electrical resistivity and the shear strength are 8.83 μΩ cm and 36.4 MPa, respectively, which are far better than the traditional Sn performs. Furthermore, two fracture failure models were obtained to analyze the breaking mechanism of the bonding joints under different sintering temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Liu, S. He, H. Nishikawa, Thermally stable Cu3Sn/Cu composite joint for high-temperature power device. Scr. Mater. 110, 101–104 (2016)

    Article  CAS  Google Scholar 

  2. Y. Peng, Q. Sun, J. Liu, H. Cheng, Y. Mou, Fabrication of stacked color converter for high-power WLEDs with ultra-high color rendering. J. Alloys Compd. 850, 156811 (2021)

    Article  CAS  Google Scholar 

  3. J. Liu, K. Wang, F. Yu, C. Hang, X. Fu, H. Chen, M. Li, A paste based on Cu@Sn@Ag particles for die attachment under ambient atmosphere in power device packaging. J. Mater. Sci. 31, 1808–1816 (2020)

    CAS  Google Scholar 

  4. Y. Mou, J. Liu, H. Cheng, Y. Peng, M. Chen, Facile preparation of self-reducible Cu nanoparticle paste for low temperature Cu–Cu bonding. JOM 71, 3076–3083 (2019)

    Article  CAS  Google Scholar 

  5. J. Li, Q. Liang, T. Shi, J. Fan, B. Gong, C. Feng, J. Fan, G. Liao, Z. Tang, Design of Cu nanoaggregates composed of ultra-small Cu nanoparticles for Cu–Cu thermocompression bonding. J. Alloys Compd. 772, 793–800 (2019)

    Article  CAS  Google Scholar 

  6. C. Subramaniam, Y. Yasuda, S. Takeya et al., Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics. Nanoscale 6, 2669–2674 (2014)

    Article  CAS  Google Scholar 

  7. L. Coppola, D. Huff, F. Wang, R. Burgos, D. Boroyevich, Survey on high-temperature packaging materials for SiC-based power electronics modules. IEEE Power Electron. Spec. Conf. 38, 2234–2240 (2007)

    Google Scholar 

  8. Y. Kong, X. Li, Y. Mei, G. Lu, Effects of die-attach material and ambient temperature on properties of high-power COB blue LED module. IEEE Trans. Electron Devices 62, 2251–2256 (2015)

    Article  CAS  Google Scholar 

  9. N. Narendran, Y. Gu, Life of LED-based white light sources. J. Disp. Technol. 1, 167–171 (2005)

    Article  CAS  Google Scholar 

  10. F. Roccaforte, P. Fiorenza, G. Greco, R. Lo Nigro, F. Giannazzo, F. Iucolano, M. Saggio, Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron. Eng. 187–188, 66–77 (2018)

    Article  CAS  Google Scholar 

  11. Q. Sun, Z. Yang, H. Cheng, Y. Peng, Y. Huang, M. Chen, Creation of three-dimensional structures by direct ink writing with kaolin suspensions. J. Mater. Chem. C 6, 11392–11400 (2018)

    Article  CAS  Google Scholar 

  12. Z. Shen, R.W. Johnson, M.C. Hamilton, SiC power device die attach for extreme. Environments 62, 346–353 (2015)

    CAS  Google Scholar 

  13. R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, M. Christopher, The changing automotive environment: high-temperature electronics. IEEE Trans. Electron. Packag. Manuf. 27, 164–176 (2004)

    Article  Google Scholar 

  14. Y. Zhong, R. An, C. Wang, Z. Zheng, Z. Liu, C. Liu, C. Li, T. Kim, S. Jin, Low temperature sintering Cu6Sn5 nanoparticles for superplastic and super-uniform high temperature circuit interconnections. Small 11, 4097–4103 (2015)

    Article  CAS  Google Scholar 

  15. Z.X. Zhu, C.C. Li, L.L. Liao, C.K. Liu, C.R. Kao, Au–Sn bonding material for the assembly of power integrated circuit module. J. Alloys Compd. 671, 340–345 (2016)

    Article  CAS  Google Scholar 

  16. S.A. Paknejad, A. Mansourian, Y. Noh, K. Khtatba, S.H. Mannan, Thermally stable high temperature die attach solution. Mater. Des. 89, 1310–1314 (2016)

    Article  CAS  Google Scholar 

  17. Y. Du, C. Li, B. Huang, M. Tang, C. Du, Research and prospect of binary high-temperature Pb-free solders. Solder. Surf. Mt. Technol. 27, 7–12 (2015)

    Article  Google Scholar 

  18. T. Yang, J. Wu, C. Li, S. Yang, C.R. Kao, Low temperature bonding for high temperature applications by using SnBi solders. J. Alloys Compd. 647, 681–685 (2015)

    Article  CAS  Google Scholar 

  19. C. Chen, D. Kim, Z. Wang, Z. Zhang, Y. Gao, C. Choe, K. Suganuma, Low temperature low pressure solid-state porous Ag bonding for large area and its high-reliability design in die-attached power modules. Ceram. Int. 45, 9573–9579 (2019)

    Article  CAS  Google Scholar 

  20. Y. Mou, H. Wang, Y. Peng, J. Liu, H. Cheng, Q. Sun, M. Chen, Low temperature enhanced flexible conductive film by Ag flake/ion composite ink. Mater. Des. 186, 108339 (2020)

    Article  CAS  Google Scholar 

  21. E. Ide, S. Angata, A. Hirose, K. Kobayashi, Metal–metal bonding process using Ag metallo-organic nanoparticles. Acta Mater. 53, 2385–2393 (2005)

    Article  CAS  Google Scholar 

  22. Z. Liu, J. Cai, Q. Wang, Z. Wang, L. Liu, G. Zou, Thermal-stable void-free interface morphology and bonding mechanism of low-temperature Cu–Cu bonding using Ag nanostructure as intermediate. J. Alloys Compd. 767, 575–582 (2018)

    Article  CAS  Google Scholar 

  23. J. Li, X. Zhang, X. Liu, Q. Liang, G. Liao, Z. Tang, T. Shi, Conductivity and foldability enhancement of Ag patterns formed by PVAc modified Ag complex inks with low-temperature and rapid sintering. Mater. Des. 185, 108255 (2020)

    Article  CAS  Google Scholar 

  24. J. Liu, Y. Mou, Y. Peng, Q. Sun, M. Chen, Novel Cu–Ag composite nanoparticle paste for low temperature bonding. Mater. Lett. 248, 78–81 (2019)

    Article  CAS  Google Scholar 

  25. T. Hu, H. Chen, M. Li, C. Wang, Microstructure evolution and thermostability of bondline based on Cu@Sn core-shell structured microparticles under high-temperature conditions. Mater. Des. 131, 196–203 (2017)

    Article  CAS  Google Scholar 

  26. B.S. Lee, S.K. Hyun, J.W. Yoon, Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging. J. Mater. Sci. Mater. Electron. 28, 7827–7833 (2017)

    Article  CAS  Google Scholar 

  27. H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, L. Liu, Novel transient liquid phase bonding through capillary action for high-temperature power devices packaging. Mater. Sci. Eng. 724, 231–238 (2018)

    Article  CAS  Google Scholar 

  28. X. Liu, S. He, H. Nishikawa, Low temperature solid-state bonding using Sn-coated Cu particles for high temperature die attach. J. Alloys Compd. 695, 2165–2172 (2017)

    Article  CAS  Google Scholar 

  29. F. Yu, B. Wang, Q. Guo, X. Ma, M. Li, H. Chen, Ag@Sn core-shell powder preform with a high re-melting temperature for high-temperature power devices packaging. Adv. Eng. Mater. 20, 1700524 (2018)

    Article  Google Scholar 

  30. F. Yu, C. Hang, M. Zhao, H. Chen, An interconnection method based on Sn-coated Ni core-shell powder preforms for high-temperature applications. J. Alloys Compd. 776, 791–797 (2019)

    Article  CAS  Google Scholar 

  31. T. Hu, H. Chen, M. Li, Die attach materials with high remelting temperatures created by bonding Cu@Sn microparticles at lower temperatures. Mater. Des. 108, 383–390 (2016)

    Article  CAS  Google Scholar 

  32. Y. Xiao, Q. Wang, L. Wang, X. Zeng, M. Li, Z. Wang, X. Zhang, X. Zhu, Ultrasonic soldering of Cu alloy using Ni-foam/Sn composite interlayer. Ultrason. Sonochem. 45, 223–230 (2018)

    Article  CAS  Google Scholar 

  33. H. He, S. Huang, Y. Ye, Y. Xiao, Z. Zhang, M. Li, R. Goodall, Microstructure and mechanical properties of Cu joints soldered with a Sn-based composite solder, reinforced by metal foam. J. Alloys Compd. 845, 156240 (2020)

    Article  CAS  Google Scholar 

  34. F. Yu, H. Chen, C. Hang, M. Li, Fabrication of high-temperature-resistant bondline based on multilayer core–shell hybrid microspheres for power devices. J. Mater. Sci. Mater. Electron. 30, 3595–3603 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the facility support of Analytical and Testing Center of Huazhong University of Science and Technology for SEM, TG-DSC and EDS measurements. This work was financially supported by the National Natural Science Foundation of China (51775219, 51805196) and the Fundamental Research Funds for Central Universities (2017JYCXJJ006).

Author information

Authors and Affiliations

Authors

Contributions

JL: experimental design, write the manuscript. QW and JL: participate in the experimental process, data curation. YM: give some advices to this work. YP and MC: supervision, review and edit, be related to the funding projects. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Yang Peng or Mingxiang Chen.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, Q., Liu, J. et al. Facile preparation of Cu foam/Sn composite preforms for low-temperature interconnection of high-power devices. J Mater Sci: Mater Electron 32, 12547–12556 (2021). https://doi.org/10.1007/s10854-021-05890-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05890-x

Navigation