Skip to main content

Advertisement

Log in

High dielectric CsPbBr3/rGO/polyimide composite prepared via in-situ conversion of fillers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High dielectric (high-k) polymer matrix composites (PMCs) have attracted much attention owing to their moderate dielectric property, good thermal stability, and excellent mechanical flexibility, as well as facile processability, light weight, and low cost. Herein, we report an in-situ synthesis strategy to fabricate high-performance high-k PMCs. A novel perovskite CsPbBr3/rGO/polyimide composite is fabricated by in-situ polymerization of poly(amic acid) (PAA) followed by thermal imidization, in-situ chemical reduction of graphene oxide (GO), and in-situ crystallization of CsPbBr3 nanoparticles. The fillers are uniformly dispersed in the polyimide (PI) matrix due to the multiple in-situ conversion processes, which form numerous micro-capacitors to enhance the dielectric permittivity. Attributing to the synergetic effect between rGO and CsPbBr3 nanocrystals, the CsPbBr3/rGO/PI composite showed a high dielectric permittivity up to 213, a high energy storage density of up to 5.20 J cm−3, and a dielectric loss less than 0.35. Besides, the thermal stability of the composites is enhanced (5% weight loss temperature (T5%) > 523 °C), and the mechanical strength is well retained under a relatively low filling amount of fillers (10 wt% CsPbBr3). Therefore, the as-fabricated CsPbBr3/rGO/PI composites would be promising for applications in energy storage polymer thin-film capacitors, and this research also opens a new avenue to fabricate high-k PMCs with good comprehensive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Q. Li, L. Chen, M.R. Gadinski et al., Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576 (2015). https://doi.org/10.1038/nature14647

    Article  CAS  Google Scholar 

  2. T.D. Huan, S. Boggs, G. Teyssedre et al., Advanced polymeric dielectrics for high energy density applications. Prog. Mater. Sci. 83, 236 (2016). https://doi.org/10.1016/j.pmatsci.2016.05.001

    Article  CAS  Google Scholar 

  3. Q. Li, F. Liu, T. Yang et al., Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures. Proc. Natl. Acad. Sci. 113, 9995 (2016). https://doi.org/10.1073/pnas.1603792113

    Article  CAS  Google Scholar 

  4. X. Huang, P. Jiang, Core–shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 27, 546 (2015). https://doi.org/10.1002/adma.201401310

    Article  CAS  Google Scholar 

  5. R.P. Ortiz, A. Facchetti, T.J. Marks, High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 110, 205 (2010). https://doi.org/10.1021/cr9001275

    Article  CAS  Google Scholar 

  6. Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, G.-H. Hu, Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater. Sci. 57, 660 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.001

    Article  CAS  Google Scholar 

  7. X. Liao, Y. Ding, L. Chen et al., Polyacrylonitrile-derived polyconjugated ladder structures for high performance all-organic dielectric materials. Chem. Commun. 51, 10127 (2015). https://doi.org/10.1039/C5CC03137K

    Article  CAS  Google Scholar 

  8. S.P. Samant, C.A. Grabowski, K. Kisslinger et al., Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors. ACS Appl. Mater. Interfaces. 8, 7966 (2016). https://doi.org/10.1021/acsami.5b11851

    Article  CAS  Google Scholar 

  9. Y. Thakur, B. Zhang, R. Dong et al., Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering. Nano Energy 32, 73 (2017). https://doi.org/10.1016/j.nanoen.2016.12.021

    Article  CAS  Google Scholar 

  10. X. Peng, Q. Wu, S. Jiang, M. Hanif, S. Chen, H. Hou, High dielectric constant polyimide derived from 5,5′-bis[(4-amino) phenoxy]-2,2′-bipyrimidine. J. Appl. Polym. Sci. 131, 40828 (2014). https://doi.org/10.1002/app.40828

    Article  CAS  Google Scholar 

  11. D. Fang, K. Yao, Y. Ding, P. Li, H. Hou, High dielectric polyimide composite film filled with a heat-resistant organic salt. Compos. Commun. 14, 29 (2019). https://doi.org/10.1016/j.coco.2019.05.008

    Article  Google Scholar 

  12. C. Zhang, Y. Yu, Y. Ding, T. Yang, G. Duan, H. Hou, β-Cyclodextrin toughened polyimide composites toward all-organic dielectric materials. J. Mater. Sci. 29, 1182 (2018). https://doi.org/10.1007/s10854-017-8020-1

    Article  CAS  Google Scholar 

  13. L. Chen, Y. Ding, T. Yang, C. Wan, H. Hou, Synthesis and properties of a high dielectric constant copolymer of a copper phthalocyanine oligomer grafted to amino-capped polyimide. J. Mater. Chem. C 5, 8371 (2017). https://doi.org/10.1039/C7TC03169F

    Article  CAS  Google Scholar 

  14. V. Sharma, C. Wang, R.G. Lorenzini et al., Rational design of all organic polymer dielectrics. Nat. Commun. 5, 4845 (2014). https://doi.org/10.1038/ncomms5845

    Article  CAS  Google Scholar 

  15. R. Guo, H. Luo, M. Yan, X. Zhou, K. Zhou, D. Zhang, Significantly enhanced breakdown strength and energy density in sandwich-structured nanocomposites with low-level BaTiO3 nanowires. Nano Energy 79, 105412 (2021). https://doi.org/10.1016/j.nanoen.2020.105412

    Article  CAS  Google Scholar 

  16. P.W. Jaschin, R. Bhimireddi, K.B.R. Varma, Enhanced dielectric properties of LaNiO3/BaTiO3/PVDF: a three-phase percolative polymer nanocrystal composite. ACS Appl. Mater. Interfaces 10, 27278 (2018). https://doi.org/10.1021/acsami.8b07786

    Article  CAS  Google Scholar 

  17. S.A. Mirkhani, A. Shayesteh Zeraati, E. Aliabadian, M. Naguib, U. Sundararaj, High dielectric constant and low dielectric loss via poly(vinyl alcohol)/Ti3C2Tx MXene nanocomposites. ACS Appl. Mater. Interfaces 11, 18599 (2019). https://doi.org/10.1021/acsami.9b00393

    Article  CAS  Google Scholar 

  18. Y. Liu, C. Zhang, B. Huang et al., Skin–core structured fluorinated MWCNTs: a nanofiller towards a broadband dielectric material with a high dielectric constant and low dielectric loss. J. Mater. Chem. C 6, 2370 (2018). https://doi.org/10.1039/C7TC05434C

    Article  CAS  Google Scholar 

  19. W. Xu, Y. Ding, S. Jiang et al., Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning. Eur. Polymer J. 59, 129 (2014). https://doi.org/10.1016/j.eurpolymj.2014.07.028

    Article  CAS  Google Scholar 

  20. Y. Ding, Q. Wu, D. Zhao, W. Ye, M. Hanif, H. Hou, Flexible PI/BaTiO3 dielectric nanocomposite fabricated by combining electrospinning and electrospraying. Eur. Polymer J. 49, 2567 (2013). https://doi.org/10.1016/j.eurpolymj.2013.05.016

    Article  CAS  Google Scholar 

  21. B. Luo, X. Wang, Y. Wang, L. Li, Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A 2, 510 (2014). https://doi.org/10.1039/C3TA14107A

    Article  CAS  Google Scholar 

  22. Y. Wang, M. Yao, R. Ma et al., Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. J. Mater. Chem. A 8, 884 (2020). https://doi.org/10.1039/C9TA11527G

    Article  CAS  Google Scholar 

  23. Q. Chi, T. Ma, Y. Zhang et al., Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induced PDA-coated 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanofibers. J. Mater. Chem. A 5, 16757 (2017). https://doi.org/10.1039/C7TA03897F

    Article  CAS  Google Scholar 

  24. L. Sun, Z. Shi, L. Liang et al., Layer-structured BaTiO3/P(VDF–HFP) composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications. J. Mater. Chem. C 8, 10257 (2020). https://doi.org/10.1039/D0TC01801E

    Article  CAS  Google Scholar 

  25. L. Sun, Z. Shi, H. Wang et al., Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide–BaTiO3/P(VDF-HFP) composites. J. Mater. Chem. A 8, 5750 (2020). https://doi.org/10.1039/D0TA00903B

    Article  CAS  Google Scholar 

  26. J.E.Q. Quinsaat, M. Alexandru, F.A. Nüesch, H. Hofmann, A. Borgschulte, D.M. Opris, Highly stretchable dielectric elastomer composites containing high volume fractions of silver nanoparticles. J. Mater. Chem. A 3, 14675 (2015). https://doi.org/10.1039/C5TA03122B

    Article  CAS  Google Scholar 

  27. X. Huang, X. Zhang, G.-K. Ren et al., Non-intuitive concomitant enhancement of dielectric permittivity, breakdown strength and energy density in percolative polymer nanocomposites by trace Ag nanodots. J. Mater. Chem. A 7, 15198 (2019). https://doi.org/10.1039/C9TA02257K

    Article  CAS  Google Scholar 

  28. Y. Chen, B. Lin, X. Zhang et al., Enhanced dielectric properties of amino-modified-CNT/polyimide composite films with a sandwich structure. J. Mater. Chem. A 2, 14118 (2014). https://doi.org/10.1039/C4TA01818D

    Article  CAS  Google Scholar 

  29. X. Liao, W. Ye, L. Chen et al., Flexible hdC-G reinforced polyimide composites with high dielectric permittivity. Compos. A Appl. Sci. Manuf. 101, 50 (2017). https://doi.org/10.1016/j.compositesa.2017.06.011

    Article  CAS  Google Scholar 

  30. W. Xu, Y. Feng, Y. Ding, S. Jiang, H. Fang, H. Hou, Short electrospun carbon nanofiber reinforced polyimide composite with high dielectric permittivity. Mater. Lett. 161, 431 (2015). https://doi.org/10.1016/j.matlet.2015.09.014

    Article  CAS  Google Scholar 

  31. J. Chen, X. Wang, X. Yu et al., High dielectric constant and low dielectric loss poly(vinylidene fluoride) nanocomposites via a small loading of two-dimensional Bi2Te3@Al2O3 hexagonal nanoplates. J. Mater. Chem. C 6, 271 (2018). https://doi.org/10.1039/C7TC04758D

    Article  CAS  Google Scholar 

  32. L. Zhang, X. Lu, X. Zhang, L. Jin, Z. Xu, Z.Y. Cheng, All-organic dielectric nanocomposites using conducting polypyrrole nanoclips as filler. Compos. Sci. Technol. 167, 285 (2018). https://doi.org/10.1016/j.compscitech.2018.08.017

    Article  CAS  Google Scholar 

  33. C. Huang, Q.M. Zhang, J. Su, High-dielectric-constant all-polymer percolative composites. Appl. Phys. Lett. 82, 3502 (2003). https://doi.org/10.1063/1.1575505

    Article  CAS  Google Scholar 

  34. W. Xu, Y. Ding, Y. Yu, S. Jiang, L. Chen, H. Hou, Highly foldable PANi@CNTs/PU dielectric composites toward thin-film capacitor application. Mater. Lett. 192, 25 (2017). https://doi.org/10.1016/j.matlet.2017.01.064

    Article  CAS  Google Scholar 

  35. L. Yang, X. Kong, F. Li et al., Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.005

    Article  CAS  Google Scholar 

  36. Z. Chen, Y. Liu, L. Fang, P. Jiang, X. Huang, Role of reduced graphene oxide in dielectric enhancement of ferroelectric polymers composites. Appl. Surf. Sci. 470, 348 (2019). https://doi.org/10.1016/j.apsusc.2018.11.150

    Article  CAS  Google Scholar 

  37. M. Zhao, Q. Fu, Y. Hou, L. Luo, W. Li, BaTiO3/MWNTs/polyvinylidene fluoride ternary dielectric composites with excellent dielectric property, high breakdown strength, and high-energy storage density. ACS Omega 4, 1000 (2019). https://doi.org/10.1021/acsomega.8b02504

    Article  CAS  Google Scholar 

  38. W. Xu, Y. Ding, S. Jiang, L. Chen, X. Liao, H. Hou, Polyimide/BaTiO3/MWCNTs three-phase nanocomposites fabricated by electrospinning with enhanced dielectric properties. Mater. Lett. 135, 158 (2014). https://doi.org/10.1016/j.matlet.2014.07.157

    Article  CAS  Google Scholar 

  39. J. Yang, X. Zhu, H. Wang et al., Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via constructing hollow-structured filler frameworks. Compos. A Appl. Sci. Manuf. 131, 105814 (2020). https://doi.org/10.1016/j.compositesa.2020.105814

    Article  CAS  Google Scholar 

  40. J. Yang, X. Zhu, H. Wang et al., Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via constructing hollow-structured filler frameworks. J. Mater. Sci. 56, 4254 (2021). https://doi.org/10.1007/s10853-020-05536-z

    Article  CAS  Google Scholar 

  41. W. Zhang, X. Zhu, L. Liang et al., Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Compos. A Appl. Sci. Manuf. 125, 105521 (2019). https://doi.org/10.1016/j.compositesa.2019.105521

    Article  CAS  Google Scholar 

  42. W. Xu, Y. Ding, S. Jiang, W. Ye, X. Liao, H. Hou, High permittivity nanocomposites fabricated from electrospun polyimide/BaTiO3 hybrid nanofibers. Polym. Compos. 37, 794 (2016). https://doi.org/10.1002/pc.23236

    Article  CAS  Google Scholar 

  43. D. Ai, H. Li, Y. Zhou et al., Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Adv. Energy Mater. 10, 1903881 (2020). https://doi.org/10.1002/aenm.201903881

    Article  CAS  Google Scholar 

  44. X. Peng, Q. Wu, S. Jiang, M. Hanif, S. Chen, H. Hou, High performance polyimide-Yb complex with high dielectric constant and low dielectric loss. Mater. Lett. 133, 240 (2014). https://doi.org/10.1016/j.matlet.2014.07.017

    Article  CAS  Google Scholar 

  45. X. Peng, W. Xu, L. Chen et al., Polyimide complexes with high dielectric performance: toward polymer film capacitor applications. J. Mater. Chem. C 4, 6452 (2016). https://doi.org/10.1039/C6TC01304J

    Article  CAS  Google Scholar 

  46. P. Liang, P. Zhang, A. Pan et al., Unusual stability and temperature-dependent properties of highly emissive CsPbBr3 perovskite nanocrystals obtained from in situ crystallization in poly(vinylidene difluoride). ACS Appl. Mater. Interfaces. 11, 22786 (2019). https://doi.org/10.1021/acsami.9b06811

    Article  CAS  Google Scholar 

  47. Y. Ding, H. Hou, Y. Zhao, Z. Zhu, H. Fong, Electrospun polyimide nanofibers and their applications. Prog. Polym. Sci. 61, 67 (2016). https://doi.org/10.1016/j.progpolymsci.2016.06.006

    Article  CAS  Google Scholar 

  48. M. Panahi-Sarmad, B. Zahiri, M. Noroozi, Graphene-based composite for dielectric elastomer actuator: a comprehensive review. Sens. Actuators A 293, 222 (2019). https://doi.org/10.1016/j.sna.2019.05.003

    Article  CAS  Google Scholar 

  49. H. Yuan, Y. Zhao, J. Duan, Y. Wang, X. Yang, Q. Tang, All-inorganic CsPbBr3 perovskite solar cell with 10.26% efficiency by spectra engineering. J. Mater. Chem. A 6, 24324 (2018). https://doi.org/10.1039/C8TA08900K

    Article  CAS  Google Scholar 

  50. J. Zeng, C. Meng, X. Li et al., Interfacial-tunneling-effect-enhanced CsPbBr3 photodetectors featuring high detectivity and stability. Adv. Func. Mater. 29, 1904461 (2019). https://doi.org/10.1002/adfm.201904461

    Article  CAS  Google Scholar 

  51. B. Xin, Y. Pak, S. Mitra et al., Self-patterned CsPbBr3 nanocrystals for high-performance optoelectronics. ACS Appl. Mater. Interfaces. 11, 5223 (2019). https://doi.org/10.1021/acsami.8b17249

    Article  CAS  Google Scholar 

  52. W. Xu, Y. Ding, R. Huang, Z. Zhu, H. Fong, H. Hou, High-performance polyimide nanofibers reinforced polyimide nanocomposite films fabricated by co-electrospinning followed by hot-pressing. J. Appl. Polym. Sci. 135, 46849 (2018). https://doi.org/10.1002/app.46849

    Article  CAS  Google Scholar 

  53. X. Feng, H. Ju, T. Song, T. Fang, W. Liu, W. Huang, Highly efficient photocatalytic degradation performance of CsPb(Br1–xClx)3-Au nanoheterostructures. ACS Sustain. Chem. Eng. 7, 5152 (2019). https://doi.org/10.1021/acssuschemeng.8b06023

    Article  CAS  Google Scholar 

  54. H. Wu, Y. Zhang, M. Lu, X. Zhang, C. Sun, T. Zhang, V.L. Colvin, W.W. Yu, Surface ligand modification of cesium lead bromide nanocrystals for improved light-emitting performance. Nanoscale 10, 4173 (2018). https://doi.org/10.1039/C7NR09126E

    Article  CAS  Google Scholar 

  55. Q. Wang, L. Tao, X. Jiang, M. Wang, Y. Shen, Graphene oxide wrapped CH3NH3PbBr3 perovskite quantum dots hybrid for photoelectrochemical CO2 reduction in organic solvents. Appl. Surf. Sci. 465, 607 (2019). https://doi.org/10.1016/j.apsusc.2018.09.215

    Article  CAS  Google Scholar 

  56. J. Li, S.G.R. Bade, X. Shan, Z. Yu, Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv. Mater. 27, 5196 (2015). https://doi.org/10.1002/adma.201502490

    Article  CAS  Google Scholar 

  57. J. Wei, H. Li, Y. Zhao et al., Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network. Nano Energy 26, 139 (2016). https://doi.org/10.1016/j.nanoen.2016.05.023

    Article  CAS  Google Scholar 

  58. G. Li, Z.-K. Tan, D. Di et al., Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15, 2640 (2015). https://doi.org/10.1021/acs.nanolett.5b00235

    Article  CAS  Google Scholar 

  59. K. Meeporn, P. Thongbai, Flexible La1.5Sr0.5NiO4/poly(vinylidene fluoride) composites with an ultra high dielectric constant: a comparative study. Compos. Part B Eng. 184, 107738 (2020). https://doi.org/10.1016/j.compositesb.2019.107738

    Article  CAS  Google Scholar 

  60. X.-R. Pan, M. Wang, X.-D. Qi et al., Fabrication of sandwich-structured PPy/MoS2/PPy nanosheets for polymer composites with high dielectric constant, low loss and high breakdown strength. Compos. A Appl. Sci. Manuf. 137, 106032 (2020). https://doi.org/10.1016/j.compositesa.2020.106032

    Article  CAS  Google Scholar 

  61. Y.-J. Wan, P.-L. Zhu, S.-H. Yu et al., Barium titanate coated and thermally reduced graphene oxide towards high dielectric constant and low loss of polymeric composites. Compos. Sci. Technol. 141, 48 (2017). https://doi.org/10.1016/j.compscitech.2017.01.010

    Article  CAS  Google Scholar 

  62. L. Zhu, Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 5, 3677 (2014). https://doi.org/10.1021/jz501831q

    Article  CAS  Google Scholar 

  63. H. Liu, Y. Shen, Y. Song, C.-W. Nan, Y. Lin, X. Yang, Carbon nanotube array/polymer core/shell structured composites with high dielectric permittivity, low dielectric loss, and large energy density. Adv. Mater. 23, 5104 (2011). https://doi.org/10.1002/adma.201102079

    Article  CAS  Google Scholar 

  64. G. Tong, T. Chen, H. Li et al., Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells. Nano Energy 65, 104015 (2019). https://doi.org/10.1016/j.nanoen.2019.104015

    Article  CAS  Google Scholar 

  65. A. Leszczyńska, J. Njuguna, K. Pielichowski, J.R. Banerjee, Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochimica Acta 453, 75 (2007). https://doi.org/10.1016/j.tca.2006.11.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 21865013) and the Science and Technology Project of Jiangxi provincial department of education (No. GJJ150361).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yichun Ding or Xinwen Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3959 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Liu, Y., Kong, M. et al. High dielectric CsPbBr3/rGO/polyimide composite prepared via in-situ conversion of fillers. J Mater Sci: Mater Electron 32, 12414–12423 (2021). https://doi.org/10.1007/s10854-021-05872-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05872-z

Navigation