Skip to main content
Log in

Improvement of specific capacitance and rate performance of NiWO4 synthesized through modified chemical precipitation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Using hydrazine hydrate (N2H4·H2O) as precipitant, micro-flowers NiWO4 was prepared by co-precipitation and low-temperature heat treatment, and its capacitance was studied. The different amount of N2H4·H2O resulted in two different morphologies of the samples. The electrochemical performance of the sample was tested by CV, GCD, and EIS. The results show that the specific capacitance of the nickel tungstate electrode is 170 F g−1 when the current density is 1 A g−1 in 6 M KOH solution, and the specific capacitance and rate performance of the sample are greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Naskar, A. Maiti, P. Chakraborty, D. Kundu, B. Biswas, A. Banerjee, J. Mater. Chem. A 9, 1970–2017 (2021)

    Article  CAS  Google Scholar 

  2. J.J. Tian, Y. Xue, X.P. Yu, Y.C. Pei, H.C. Zhang, J.J. Wang, RSC Adv. 8(73), 41740–41748 (2018)

    Article  CAS  Google Scholar 

  3. Y.X. Huang, Y. Gao, C.H. Liu, Z.Z. Cao, Y. Wang, Z.M. Li, Y.X. Yan, M.L. Zhang, G.Z. Cao, J. Phys. Chem. C 123, 30067–30076 (2019)

    Article  CAS  Google Scholar 

  4. Y.H. Zhang, N.K. Hao, X.J. Lin, S.X. Nie, Carbohydr. Polym. 234, 115888 (2020)

    Article  CAS  Google Scholar 

  5. Y.Y. Ji, L. Yang, X. Ren, G.W. Cui, X.L. Xiong, X.P. Sun, ACS Sustain. Chem. Eng. 6(8), 9555–9559 (2018)

    Article  CAS  Google Scholar 

  6. W. Qin, N.F. Zhou, C. Wu, M.M. Xie, H.C. Sun, Y. Guo, L.K. Pan, ACS Omega 5(8), 3801–3808 (2020)

    Article  CAS  Google Scholar 

  7. M.A.A.M. Abdah, N.H.N. Azman, S. Kulandaivalu, Y. Sulaiman, Mater. Design 186, 108199 (2019)

    Article  Google Scholar 

  8. R. DhilipKumar, Y. Andou, S. Karuppuchamy, J. Alloy Compd. 654, 349–356 (2016)

    Article  Google Scholar 

  9. R. DhilipKumar, S. Karuppuchamy, Ceramics Inter. 40(8), 12397–12402 (2014)

    Article  CAS  Google Scholar 

  10. J. Shi, B.L. Jiang, C. Li, F.Y. Yan, D. Wang, C. Yang, J.J. Wan, Mater. Chem. Phys. 31, 122533 (2020)

    Article  Google Scholar 

  11. U. Nithiyanantham, S.R. Ede, S. Anantharaj, S. Kundu, Cryst. Growth. Des. 15(2), 673–686 (2015)

    Article  CAS  Google Scholar 

  12. J. Wang, H. Jang, G.K. Li, M.G. Kim, Z.X. Wu, X. Liu, J. Cho, Nanoscale 12, 1478–1483 (2020)

    Article  CAS  Google Scholar 

  13. R. Geetanjali, S. Rani, Fuel. Cells. 3, 299–308 (2019)

    Article  Google Scholar 

  14. X.X. Wang, Y. Li, M.C. Liu, L.B. Kong, Ionics 24, 363–372 (2018)

    Article  Google Scholar 

  15. X.W. Xu, L.Y. Pei, Y. Yang, J.F. Shen, M.X. Ye, J. Alloy Compd. 654, 23–31 (2016)

    Article  CAS  Google Scholar 

  16. X. Guo, M.G. Li, Y.Q. Liu, Y.R. Huang, S. Geng, W.W. Yang, Y.S. Yu, J. Colloid Interface Sci. 563, 405–413 (2020)

    Article  CAS  Google Scholar 

  17. Y.D. Wang, C. Shen, L.Y. Niu, Z.K. Sun, F.P. Ruan, M. Xu, S. Shan, C. Li, X.J. Liu, Y.Y. Gong, Mater. Chem. Phys. 182, 394–401 (2016)

    Article  CAS  Google Scholar 

  18. R. Kumar, P.K. Gupta, A. Agrawal, R.K. Nagarale, A. Sharma, J. Electrochem. Soc. 164(4), A785–A795 (2017)

    Article  CAS  Google Scholar 

  19. W. Wang, N. Wu, J.M. Zhou, F. Li, Y. Wei, T.H. Li, X.L. Wu, Nanoscale 10, 6832–6836 (2018)

    Article  CAS  Google Scholar 

  20. S. Jha, S. Mehta, Y. Chen, P. Renner, S.S. Sankar, D. Parkinson, S. Kundu, H. Liang, J. Phys. Chem. C 8, 3418–3430 (2020)

    CAS  Google Scholar 

  21. U. Nithiyanantham, S.R. Ede, S. Anantharaj, S. Kundu, Cryst. Growth Des. 15(2), 673–686 (2015)

    Article  CAS  Google Scholar 

  22. J.H. Tang, J.F. Shen, N. Li, M.X. Ye, J Alloy Compd. 666, 15–22 (2016)

    Article  CAS  Google Scholar 

  23. K.S. Samantaray, S. Sahoo, C.S. Rout, Am. J. Eng. Appl. Sci. 3, 584–590 (2016)

    Article  Google Scholar 

  24. R.A. Soomro, S. Jawaid, P. Zhang, X. Han, K.R. Hallam, S. Karakus, A. Kilislioglu, B. Xu, M. Willander, Sensor Actuators B 328, 129074 (2021)

    Article  CAS  Google Scholar 

  25. X.S. Feng, Y. Huang, M.H. Chen, X.F. Chen, C. Li, S.H. Zhou, X.G. Gao, J. Alloy Compd. 763, 801–807 (2018)

    Article  CAS  Google Scholar 

  26. F.Y. Liu, Z.X. Wang, H.T. Zhang, L. Jin, X. Chu, B.N. Gu, H.C. Huang, W.Q. Yang, Carbon 149, 105–116 (2019)

    Article  CAS  Google Scholar 

  27. L. Yang, B.N. Gu, Z. Chen, Y. Yue, W.X. Wang, H.T. Zhang, X.H. Liu, S.J. Ren, W.Q. Yang, Y.W. Li, ACS Appl. Mater. Interfaces 11, 30360–30367 (2019)

    Article  CAS  Google Scholar 

  28. L.L. Ma, Z.Q. Chang, L.F. Guo, T.Y. Li, G. Li, K.Y. Wang, Ionics 26, 2537–2547 (2020)

    Article  CAS  Google Scholar 

  29. Y.L. Oliveira, M.J.S. Costa, A.C.S. Jucá, L.K.R. Silva, E. Longo, N.S. Arul, L.S. Cavalcante, J. Mol. Struct. 1221, 128774 (2020)

    Article  CAS  Google Scholar 

  30. N.L.M. Tri, D.S. Duc, D.V. Thuan, T.A. Tahtamouni, T.D. Pham, D.T. Tran, N.T.P.L. Chi, V.N. Nguyen, Chem. Phys. 525, 110411 (2019)

    Article  CAS  Google Scholar 

  31. Y.H. Huang, Y. Gao, C.H. Liu, Z.Z. Cao, Y. Wang, Z.M. Li, Y.X. Yan, M.L. Zhang, G.Z. Cao, J. Phys. Chem. 123, 30067–30076 (2019)

    CAS  Google Scholar 

  32. Z.Y. Ji, K. Liu, W.Y. Dai, D.W. Ma, H.Y. Zhang, X.P. Shen, G.X. Zhu, S.K. Wu, Nanoscale 13, 1689–1695 (2021)

    Article  CAS  Google Scholar 

  33. A. Bhardwaj, I.H. Kim, L. Mathur, J.Y. Park, S.J. Song, J. Hazard. Mater. 403, 123797 (2021)

    Article  CAS  Google Scholar 

  34. Z.H. Luo, L. Liu, X.Y. Yang, X. Luo, P. Bi, Z.J. Fu, A.M. Pang, W. Li, Y. Yi, ACS Appl. Mater. Interfaces 12, 39098–39107 (2020)

    Article  CAS  Google Scholar 

  35. F. Hekmat, Y. Tutel, H.E. Unalan, Int. J. Energy Res. 45(2), 1517–1534 (2020)

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from the project supported by National undergraduate training program for innovation and entrepreneurship (Grant No. S202014389197), Research project of Chengdu Normal University (Grant No. 2019CS19ZA0), and Scientific Research Innovation Team Funds of Chengdu Normal University (Grant No. CSCXTD2020A05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyang Liu or Guowei Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Zheng, C., Wang, Q. et al. Improvement of specific capacitance and rate performance of NiWO4 synthesized through modified chemical precipitation. J Mater Sci: Mater Electron 32, 12232–12240 (2021). https://doi.org/10.1007/s10854-021-05852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05852-3

Navigation