Skip to main content
Log in

Oxidizable electrode induced bipolar resistive switching behavior in TE/CdZnTe/Pt structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TE/CdZnTe/Pt/Ti/SiO2/Si structures (top electrode TE = Au, Pt, Al, Ti and Cu) were fabricated by magnetron sputtering and thermal evaporation. Bipolar resistive switching behavior was observed in TE/CdZnTe/Pt/Ti/SiO2/Si structure when TE is Al, Ti or Cu, but Pt or Au as TE in TE/CdZnTe/Pt device showed no resistive switching. The interfacial layer-dominated model was proposed to explain the presence of resistive switching behavior in TE/CdZnTe/Pt device due to oxidizable electrodes. The role of the CdZnTe film is a series resistor after the forming process. Space charge-limited current model was used to analyze the conduction mechanism and ~ 1019 cm−3 trap density in the interfacial layer was calculated by fitting the current–voltage curve. The device properties including voltage parameter distribution, retention property and endurance property were tested, respectively. The Al/CdZnTe/Pt/Ti/SiO2/Si structure has a good potential as resistive switching random access memory with over 103 ON/OFF ratio and at least 103 s retention time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.S. Kumbhar, M.A. Mahadik, V.S. Mohite et al., Effect of Ni content on the structural, morphological and magnetic properties of spray deposited Ni–Zn ferrite thin films. Mater. Res. Bull. 67, 47–54 (2015)

    Article  CAS  Google Scholar 

  2. S.S. Kumbhar, M.A. Mahadik, V.S. Mohite et al., Fabrication of Ni0.4Zn0.6Fe2O4-BaTiO3 bilayered thin films obtained by spray pyrolysis method for magnetoelectric (ME) effect measurement. J. Mater. Sci. Mater. Electron. 27(4), 3799–3811 (2016)

    Article  CAS  Google Scholar 

  3. S. Maji, S. Samanta, P. Das et al., Set compliance current induced resistive memory characteristics of W/Hf/HfOx/TiN devices. J. Vac. Sci. Technol. B 37(2), 021204 (2019)

    Article  CAS  Google Scholar 

  4. T. Guo, T. Tan, Z. Liu et al., Oxygen vacancy modulation and enhanced switching behavior in HfO x film induced by Al doping effect. J. Alloys Compd. 686, 669–674 (2016)

    Article  CAS  Google Scholar 

  5. H. Zhang, D. Ang, K. Yew et al., Observation of self-reset during forming of the TiN/HfOx/TiN resistive switching device. IEEE Electron. Device Lett. 37(9), 1116–1119 (2016)

    CAS  Google Scholar 

  6. X. Ding, Y. Feng, P. Huang et al., Low-power resistive switching characteristic in HfO2/TiOx Bi-layer resistive random-access memory. Nanoscale Res Lett. 14(1), 157 (2019)

    Article  CAS  Google Scholar 

  7. W. Liu, L. Gao, K. Xu et al., Impact of ultrathin Al2O3 interlayers on resistive switching in TiOx thin films deposited by atomic layer deposition. J. Vac. Sci. Technol. B 35(4), 1–6 (2017)

    Article  CAS  Google Scholar 

  8. J.H. Park, D.S. Jeon, T.G. Kim, Improved uniformity in the switching characteristics of ZnO-based memristors using Ti sub-oxide layers. J. Phys. D Appl. Phys. 50(1), 1–6 (2017)

    Article  CAS  Google Scholar 

  9. X. Li, H. Wu, G. Bin et al., Electrode-induced digital-to-analog resistive switching in TaOx-based RRAM devices. Nanotechnology 27(30), 1–6 (2016)

    Article  CAS  Google Scholar 

  10. C. Li, F. Wang, K. Hu et al., Ultralow power switching of Ta2O5/AlOX bilayer synergistic resistive random access memory. J. Phys. D Appl. Phys. 53(33), 1–8 (2020)

    Article  CAS  Google Scholar 

  11. Y. Wang, X. Shi, K. Zhao et al., Controllable resistive switching in Au/Nb:SrTiO3 microscopic Schottky junctions. Appl. Surf. Sci. 364, 718–725 (2016)

    Article  CAS  Google Scholar 

  12. B. Arndt, F. Borgatti, F. Offi et al., Spectroscopic indications of tunnel barrier charging as the switching mechanism in memristive devices. Adv. Funct. Mater. 27(45), 1–13 (2017)

    Article  CAS  Google Scholar 

  13. A.Q. Wang, J.P. Dong, Y.R. Li et al., Zn vacancy complex-determined filamentary resistive switching characteristics in Au/ZnSe/ITO chalcogenide-based memory cells. Aip Adv. 9(9), 095058 (2019)

    Article  CAS  Google Scholar 

  14. S. Rowtu, L.D.V. Sangani, M.G. Krishna, The role of work function and band gap in resistive switching behaviour of ZnTe thin films. J. Electron. Mater. 47(2), 1620–1629 (2018)

    Article  CAS  Google Scholar 

  15. G. Zha, Y. Lin, D. Zeng et al., Resistive switching properties in CdZnTe films. Appl. Phys. Lett. 106(6), 1–3 (2015)

    Article  CAS  Google Scholar 

  16. Z. Wang, P.B. Griffin et al., Resistive switching mechanism in ZnxCd1–xS nonvolatile memory devices. IEEE Electron. Device Lett. 28(1), 14–16 (2007)

    Article  CAS  Google Scholar 

  17. J.C. Lee, N.G. Subramaniam, J.W. Lee et al., Study of ferroelectric and reproducible bistable switching properties in CdMnS thin films for nonvolatile memory applications. Appl. Phys. Lett. 90(26), 1–3 (2007)

    Article  Google Scholar 

  18. R. Waser, R. Dittmann, M. Salinga et al., The role of defects in resistively switching chalcogenides. Int. J. Mater. Res. 101(2), 182–198 (2010)

    Article  CAS  Google Scholar 

  19. Y.M. Hunge, A.A. Yadav, S. Liu et al., Sonochemical synthesis of CZTS photocatalyst for photocatalytic degradation of phthalic acid. Ultrason. Sonochem. 56, 284–289 (2019)

    Article  CAS  Google Scholar 

  20. S.J. Patil, A.C. Lokhande, A.A. Yadav et al., Polyaniline/Cu2ZnSnS4 heterojunction based room temperature LPG sensor. J. Mater. Sci. Mater. Electron. 27(7), 7505–7508 (2016)

    Article  CAS  Google Scholar 

  21. H. Wang, X. Yan, Overview of Resistive Random Access Memory (RRAM), Materials, filament mechanisms, performance optimization, and prospects. Phys. Status Solidi R. 13(9), 1–12 (2019)

    Article  CAS  Google Scholar 

  22. Z. Shen, C. Zhao, Y. Qi et al., Advances of RRAM devices: resistive switching mechanisms, materials and bionic synaptic application. Nanomaterials (Basel) 10(8), 1–31 (2020)

    Article  CAS  Google Scholar 

  23. J. Jang, V. Subramanian, Effect of electrode material on resistive switching memory behavior of solution-processed resistive switches: realization of robust multi-level cells. Thin Solid Films. 625, 87–92 (2017)

    Article  CAS  Google Scholar 

  24. T. Guo, X. Zhang, B. Sun et al., Effect of electrode materials on nonvolatile resistive switching memory behaviors of metal/In2S3/Mo/glass devices. J. Electron. Mater. 47(9), 5417–5421 (2018)

    Article  CAS  Google Scholar 

  25. F. Yang, W. Jie, G. Zha et al., The effect of indium doping on deep level defects and electrical properties of CdZnTe. J. Electron. Mater. 49(2), 1243–1248 (2019)

    Article  CAS  Google Scholar 

  26. M. Behrens, A. Lotnyk, H. Bryja et al., Structural transitions in Ge2Sb2Te5 phase change memory thin films induced by nanosecond UV optical pulses. Materials (Basel). 13(9), 1–13 (2020)

    Article  CAS  Google Scholar 

  27. H.S.P. Wong, S. Raoux, S. Kim et al., Phase change memory. Proc. IEEE. 98(12), 2201–2227 (2010)

    Article  Google Scholar 

  28. Z. Zhang, B. Wang, P. Zhou et al., A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers. Sci Rep. 6, 1–6 (2016)

    CAS  Google Scholar 

  29. R. Gakhar, A. Merwin, K. Summers et al., Application of ZnxCd1–xSe-sensitized TiO2 nanotube arrays as photoanodes for solar cells. J. Mater. Chem. A 2(26), 10116–10125 (2014)

    Article  CAS  Google Scholar 

  30. S. Tari, F. Aqariden, Y. Chang et al., Structural and electronic properties of gold contacts on CdZnTe with different surface finishes for radiation detector applications. J. Electron. Mater. 43(8), 2978–2983 (2014)

    Article  CAS  Google Scholar 

  31. W. Xu, Z. Li, H. Wu et al., Investigation on three dimensional hybrid organic–inorganic β-ZnTe(en)0.5 flowerlike structures and corresponding mesoporous PbTe flowerlike microcrystals. J. Inorg. Organomet P 30(7), 2736–2743 (2020)

    Article  CAS  Google Scholar 

  32. P. Ilanchezhiyan, G. Mohan Kumar, F. Xiao et al., Interfacial charge transfer in ZnTe/ZnO nano arrayed heterostructures and their improved photoelectronic properties. Sol. Energy Mater. Sol. Cells. 183, 73–81 (2018)

    Article  CAS  Google Scholar 

  33. J. Borghetti, D.B. Strukov, M.D. Pickett et al., Electrical transport and thermometry of electroformed titanium dioxide memristive switches. J. Appl. Phys. 106(12), 1–5 (2009)

    Article  CAS  Google Scholar 

  34. M. Xu, C. Tan, Defect band structure investigation of postbreakdown SiO2. Appl. Phys. Lett. 92(8), 1–3 (2008)

    Article  Google Scholar 

  35. M.-S. Kang, W.-J. Cho, Effect of microwave irradiation power on resistive switching performance in solution-processed aluminum oxide resistive memory. J. Phys. Chem. Solids 123, 52–58 (2018)

    Article  CAS  Google Scholar 

  36. M.K. Kim, J.S. Lee, Design of electrodeposited bilayer structures for reliable resistive switching with self-compliance. ACS Appl. Mater. Interfaces 8(48), 32918–32924 (2016)

    Article  CAS  Google Scholar 

  37. K.Y. Lim, J.H. Park, S. Kim et al., Effect of oxygen content on resistive switching memory characteristics of TiOx films. J. Korean Phys. Soc. 60(5), 791–794 (2012)

    Article  CAS  Google Scholar 

  38. A. Latef, J.C. Bernede, Study of the thinfilm interface aluminium-tellurium. Phys. Status Solidi A 124(1), 243–252 (1991)

    Article  CAS  Google Scholar 

  39. S. Kim, B.G. Park, Power- and low-resistance-state-dependent, bipolar reset-switching transitions in SiN-Based resistive random-access memory. Nanoscale Res. Lett. 11(1), 1–8 (2016)

    Article  CAS  Google Scholar 

  40. T.-Y. Su, C.-H. Huang, Y.-C. Shih et al., Tunable defect engineering in TiON thin films by multi-step sputtering processes: from a Schottky diode to resistive switching memory. J. Mater. Chem. C 5(25), 6319–6327 (2017)

    Article  CAS  Google Scholar 

  41. K. Khawas, S. Daripa, P. Kumari et al., Electrochemical and electronic properties of transparent coating from highly solution processable graphene using block copolymer supramolecular assembly: application toward metal ion sensing and resistive switching memory. ACS Omega 3(6), 7106–7116 (2018)

    Article  CAS  Google Scholar 

  42. B.-J. Yang, Y.-T. Wu, Y.-Y. Chiu et al., Evaluation of the role of deep trap state using analytical model in the program/erase cycling of NAND flash memory and its process dependence. IEEE Trans. Electron. Devices 65(2), 499–506 (2018)

    Article  CAS  Google Scholar 

  43. F. Zhuge, K. Li, B. Fu et al., Mechanism for resistive switching in chalcogenide-based electrochemical metallization memory cells. Aip Adv. 5(5), 057125 (2015)

    Article  CAS  Google Scholar 

  44. U. Russo, D. Kamalanathan, D. Ielmini et al., Study of multilevel programming in programmable metallization cell (PMC) memory. IEEE Trans. Electron. Devices 56(5), 1040–1047 (2009)

    Article  CAS  Google Scholar 

  45. M.N. Kozicki, M. Mitkova, Mass transport in chalcogenide electrolyte films—materials and applications. J. Non·Cryst. Solids 352(6–7), 567–577 (2006)

    Article  CAS  Google Scholar 

  46. C.J. Kim, S.G. Yoon, K.J. Choi et al., Characterization of silver-saturated Ge–Te chalcogenide thin films for nonvolatile random access memory. J. Vac. Sci. Technol. B 24(2), 721–724 (2006)

    Article  CAS  Google Scholar 

  47. R. Pandian, B.J. Kooi, G. Palasantzas et al., Polarity-dependent reversible resistance switching in Ge–Sb–Te phase-change thin films. Appl. Phys. Lett. 91(15), 152103 (2007)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China with the Grant No. 2016YFF0101301, National Natural Science Foundation of China with the Grant No. 61874089 and Major scientific and technological innovation projects in Shandong Province with the Grant No. 2019JZZY021001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyan Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Zhang, J., Zha, G. et al. Oxidizable electrode induced bipolar resistive switching behavior in TE/CdZnTe/Pt structure. J Mater Sci: Mater Electron 32, 10809–10819 (2021). https://doi.org/10.1007/s10854-021-05739-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05739-3

Navigation