Skip to main content

Advertisement

Log in

Seed layer-assisted growth of branched Bi2S3 nanostructure on α-Fe2O3 thin film for improved photoelectrochemical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Incorporating a narrow bandgap semiconductor to α-Fe2O3 with matched energy positions is a promising route for improving the light-harvesting ability and charge transporting efficiency for photoelectrochemical (PEC) water splitting. Herein, the preparation of heterojunction with uniform Bi2S3 nanobranches grown on the α-Fe2O3 nanorod film was reported through a seed layer-assisted growth mechanism. By controlling successive numbers of Bi2S3 seed layers before the subsequent Bi2S3 solvothermal reaction, rod-like Bi2S3 nanobranches were well assembled on α-Fe2O3 nanorod film. PEC investigation results revealed that the as-prepared α-Fe2O3/Bi2S3 heterojunction exhibited the highest photocurrent density of 11.55 mA/cm2 at 0.9 V vs. RHE, which was 14.43 and 5.2 times higher than that of pristine α-Fe2O3 and α-Fe2O3/Bi2S3 samples prepared without a Bi2S3 seed layer, respectively. The dramatic enhanced PEC performance was attributed to improved light-harvesting efficiency and more efficient photogenerated electron–hole separation in the composite. These results demonstrated that the assembly of branched Bi2S3 nanostructures on α-Fe2O3 films should be a promising photoanode for PEC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.S. Lewis, D.G. Nocera, Mrs Bull. 32, 808 (2015)

    Article  Google Scholar 

  2. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446 (2010)

    Article  CAS  Google Scholar 

  3. J.H. Kim, H.E. Kim, J.H. Kim, J.S. Lee, J. Mater. Chem. A 8, 9447 (2020)

    Article  CAS  Google Scholar 

  4. T. Hisatomi, K. Domen, Nat. Catal. 2, 387 (2019)

    Article  CAS  Google Scholar 

  5. S.M. Thalluri, L. Bai, C. Lv, Z. Huang, X. Hu, L. Liu, Adv. Sci. 7, 1902102 (2020)

    Article  CAS  Google Scholar 

  6. P. Sharma, J.-W. Jang, J.S. Lee, ChemCatChem 11, 157 (2019)

    Article  CAS  Google Scholar 

  7. S.-S. Yi, B.-R. Wulan, J.-M. Yan, Q. Jiang, Adv. Funct. Mater. 29, 1801902 (2019)

    Article  Google Scholar 

  8. G. Segev, H. Dotan, K.D. Malviya, A. Kay, M.T. Mayer, M. Grätzel, A. Rothschild, Adv. Energy Mater. 6, 1500817 (2016)

    Article  Google Scholar 

  9. I.S. Cho, H.S. Han, M. Logar, J. Park, X. Zheng, Adv. Energy Mater. 6, 1501840 (2016)

    Article  Google Scholar 

  10. Y. Yang, M. Forster, Y. Ling, G. Wang, T. Zhai, Y. Tong, A.J. Cowan, Y. Li, Angew. Chem. Int. Ed. 55, 3403 (2016)

    Article  CAS  Google Scholar 

  11. A.K. Singh, D. Sarkar, Nanoscale 10, 13130 (2018)

    Article  CAS  Google Scholar 

  12. F. Li, J. Li, F. Li, L. Gao, X. Long, Y. Hu, C. Wang, S. Wei, J. Jin, J. Ma, J. Mater. Chem. A 6, 13412 (2018)

    Article  CAS  Google Scholar 

  13. P. Qiu, F. Li, H. Zhang, S. Wang, Z. Jiang, Y. Chen, Electrochim. Acta 358, 136847 (2020)

    Article  CAS  Google Scholar 

  14. C.X. Kronawitter, I. Zegkinoglou, S.H. Shen, P. Liao, I.S. Cho, O. Zandi, Y.S. Liu, K. Lashgari, G. Westin, J.H. Guo, F.J. Himpsel, E.A. Carter, X.L. Zheng, T.W. Hamann, B.E. Koel, S.S. Mao, L. Vayssieres, Energy Environ. Sci. 7, 3100 (2014)

    Article  CAS  Google Scholar 

  15. X. Bu, Y. Gao, S. Zhang, Y. Tian, Chem. Eng. J. 355, 910 (2019)

    Article  CAS  Google Scholar 

  16. R. Zhang, L. Yang, X. Huang, T. Chen, F. Qu, Z. Liu, G. Du, A.M. Asiri, X. Sun, J. Mater. Chem. A 5, 12086 (2017)

    Article  CAS  Google Scholar 

  17. P. Zhang, L. Yu, X.W. Lou, Angew. Chem. Int. Ed. 57, 15076 (2018)

    Article  CAS  Google Scholar 

  18. S. Adhikari, S. Selvaraj, D.-H. Kim, Appl. Catal. B 244, 11 (2019)

    Article  CAS  Google Scholar 

  19. J. Li, J. Li, H. Yuan, W. Zhang, Z. Jiao, X. Song Zhao, Chem. Eng. J. 398, 125662 (2020)

    Article  CAS  Google Scholar 

  20. B. Eftekharinia, A. Moshaii, A. Dabirian, N.S. Vayghan, J. Mater. Chem. A 5, 3412 (2017)

    Article  CAS  Google Scholar 

  21. A.G. Tamirat, W.-N. Su, A.A. Dubale, H.-M. Chen, B.-J. Hwang, J. Mater. Chem. A 3, 5949 (2015)

    Article  CAS  Google Scholar 

  22. L. Wang, Y. Yang, Y. Zhang, Q. Rui, B. Zhang, Z. Shen, Y. Bi, J. Mater. Chem. A 5, 17056 (2017)

    Article  CAS  Google Scholar 

  23. S. Bai, H. Chu, X. Xiang, R. Luo, J. He, A. Chen, Chem. Eng. J. 350, 148 (2018)

    Article  CAS  Google Scholar 

  24. S. Shen, S.A. Lindley, X. Chen, J.Z. Zhang, Energy Environ. Sci. 9, 2744 (2016)

    Article  CAS  Google Scholar 

  25. A.A. Tahir, M.A. Ehsan, M. Mazhar, K.G.U. Wijayantha, M. Zeller, A.D. Hunter, Chem. Mater. 22, 5084 (2010)

    Article  CAS  Google Scholar 

  26. L. Yang, Y. Hu, L. Zhang, Chem. Eng. J. 378, 122092 (2019)

    Article  CAS  Google Scholar 

  27. S. Luo, F. Qin, Y. Ming, H. Zhao, Y. Liu, R. Chen, J. Hazard. Mater. 340, 253 (2017)

    Article  CAS  Google Scholar 

  28. G. Ai, R. Mo, Q. Chen, H. Xu, S. Yang, H. Li, J. Zhong, RSC Adv. 5, 13544 (2015)

    Article  CAS  Google Scholar 

  29. Y. Li, L. Huang, B. Li, X. Wang, Z. Zhou, J. Li, Z. Wei, ACS Nano 10, 8938 (2016)

    Article  CAS  Google Scholar 

  30. M. Park, J.H. Seo, J.H. Kim, G. Park, J.Y. Park, W.S. Seo, H. Song, K.M. Nam, J. Phys. Chem. C 122, 17676 (2018)

    Article  CAS  Google Scholar 

  31. C. Hong, Y.-I. Kim, J.H. Seo, J.H. Kim, A. Ma, Y.J. Lim, D. Seo, S.Y. Baek, H. Jung, K.M. Nam, ACS Appl. Mater. Interfaces 12, 39713 (2020)

    Article  CAS  Google Scholar 

  32. L. Vayssieres, N. Beermann, S.-E. Lindquist, A. Hagfeldt, Chem. Mater. 13, 233 (2001)

    Article  CAS  Google Scholar 

  33. M.S. Dresselhaus, I.L. Thomas, Nature 414, 332 (2001)

    Article  CAS  Google Scholar 

  34. A. Helal, F.A. Harraz, A.A. Ismail, T.M. Sami, I.A. Ibrahim, Appl. Catal. B 213, 18 (2017)

    Article  CAS  Google Scholar 

  35. Y. Wang, W. Tian, L. Chen, F. Cao, J. Guo, L. Li, ACS Appl. Mater. Interfaces 9, 40235 (2017)

    Article  CAS  Google Scholar 

  36. Z. Fang, Y. Liu, Y. Fan, Y. Ni, X. Wei, K. Tang, J. Shen, Y. Chen, J. Phys. Chem. C 115, 13968 (2011)

    Article  CAS  Google Scholar 

  37. P. Lottici, C. Baratto, D. Bersani, G. Antonioli, A. Montenero, M. Guarneri, Opt. Mater. 9, 368 (1998)

    Article  CAS  Google Scholar 

  38. R. Mo, Q. Liu, H. Li, S. Yang, J. Zhong, J. Mater. Sci. Mater. Electron. 30, 21444 (2019)

    Article  CAS  Google Scholar 

  39. P. Kumar, P. Sharma, R. Shrivastav, S. Dass, V.R. Satsangi, Int. J. Hydrogen Energy 36, 2777 (2011)

    Article  CAS  Google Scholar 

  40. A. Zoppi, C. Lofrumento, E.M. Castellucci, P. Sciau, J. Raman Spectrosc. 39, 40 (2008)

    Article  CAS  Google Scholar 

  41. Y. Zhao, K.T.E. Chua, C.K. Gan, J. Zhang, B. Peng, Z. Peng, Q. Xiong, Phys. Rev. B 84, 205330 (2011)

    Article  Google Scholar 

  42. Y. Ma, X. Jiang, R. Sun, J. Yang, X. Jiang, Z. Liu, M. Xie, E. Xie, W. Han, Chem. Eng. J. 382, 123020 (2020)

    Article  CAS  Google Scholar 

  43. H. He, S.P. Berglund, P. Xiao, W.D. Chemelewski, Y. Zhang, C.B. Mullins, J. Mater. Chem. A 1, 12826 (2013)

    Article  CAS  Google Scholar 

  44. S.K. Pilli, T.E. Furtak, L.D. Brown, T.G. Deutsch, J.A. Turner, A.M. Herring, Energy Environ. Sci. 4, 5028 (2011)

    Article  CAS  Google Scholar 

  45. A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock, Int. J. Hydrogen Energy 31, 1999 (2006)

    Article  CAS  Google Scholar 

  46. Z. Yu, Y. Li, J. Qu, R. Zheng, J.M. Cairney, J. Zhang, M. Zhu, A. Khan, W. Li, Chem. Eng. J. 404, 126458 (2021)

    Article  CAS  Google Scholar 

  47. Y. Hou, F. Zuo, A. Dagg, P. Feng, Angew. Chem. Int. Ed. 52, 1248 (2013)

    Article  CAS  Google Scholar 

  48. W. Li, K. Wang, X. Yang, F. Zhan, Y. Wang, M. Liu, X. Qiu, J. Li, J. Zhan, Q. Li, Y. Liu, Chem. Eng. J. 379, 122256 (2020)

    Article  CAS  Google Scholar 

  49. J. Xi, H. Wang, B. Zhang, F. Zhao, B. Zeng, Sens. Actuators B 320, 128409 (2020)

    Article  CAS  Google Scholar 

  50. Y. Xu, M.A.A. Schoonen, Am. Mineral. 85, 543 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51772255), the Program of Huxiang Young Talents (2018RS3099), and the Natural Science Foundation of Hunan Province (2019JJ50097).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Mo or Hongxing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, J., Li, X., Mo, R. et al. Seed layer-assisted growth of branched Bi2S3 nanostructure on α-Fe2O3 thin film for improved photoelectrochemical performance. J Mater Sci: Mater Electron 32, 13040–13050 (2021). https://doi.org/10.1007/s10854-021-05700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05700-4

Navigation