Skip to main content
Log in

High‐performance silicon‐based PbSe-CQDs infrared photodetector

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silicon technology is dominant in electronics and optoelectronics. The cut-off wavelength of silicon is less than 1.1\(\upmu\)m due to the bandgap, limiting applications of silicon in communication, sensing, and light harvesting. A new strategy for infrared photodetection is presented by integrating silicon and PbSe colloidal quantum dots (CQDs), which combines advantages of silicon devices and PbSe-CQDs. In this study, we introduce a silicon-based photodetector that is sensitive to infrared light with spectral response from 405 nm to 1550 nm. The device can deliver a high responsivity of 648.7AW− 1 and a fast response of 32.3\(\upmu\)s at 1550 nm. Besides, the detectivity and the external quantum efficiency of the device reached 7.48 × 1010 Jones and 6.47 × 104%, respectively. The performance of the device originates from the photovoltage generated at the interface between the silicon and the quantum dots. This photovoltage changed the width of the depletion layer to realize detection. These results indicate that the silicon-based quantum dot infrared photodetectors prepared by this method have application prospects in the field of optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Rogalski, Infrared detectors: an overview. Infrared Phys. Technol. 43, 187–210 (2002)

    Article  Google Scholar 

  2. J. Michel, J. Liu, L.C. Kimerling, High-performance Ge-on-Si photodetectors. Nat. Photonics 4, 527–534 (2010)

    Article  CAS  Google Scholar 

  3. H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, R.T. Chen, Recent advances in silicon-based passive and active optical interconnects. Opt. Express 23, 2487–2511 (2015)

    Article  CAS  Google Scholar 

  4. A. Rogalski, HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267 (2005)

    Article  CAS  Google Scholar 

  5. B. Chen, W. Jiang, J. Yuan, A.L. Holmes, B.M. Onat, SWIR/MWIR InP-based pin photodiodes with InGaAs/GaAsSb type-II quantum wells. IEEE J. Quantum Electron. 47, 1244–1250 (2011)

    Article  CAS  Google Scholar 

  6. W.-D. Hu, Q. Li, X.-S. Chen, W. Lu, Recent progress on advanced infrared photodetectors. Acta Physica Sinica 68, 120701 (2019)

    Article  Google Scholar 

  7. A. Rogalski, J. Antoszewski, L. Faraone, Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 4 (2009)

    Article  Google Scholar 

  8. A. Rogalski, Recent progress in infrared detector technologies. Infrared Phys. Technol. 54, 136–154 (2011)

    Article  Google Scholar 

  9. A. Rogalski, History of infrared detectors. Opto-Electron. Rev. 20, 279–308 (2012)

    Article  Google Scholar 

  10. E.H. Sargent, Infrared quantum dots. Adv. Mater. 17, 515–522 (2005)

    Article  CAS  Google Scholar 

  11. A.J. Nozik, Multiple exciton generation in semiconductor quantum dots. Chem. Phys. Lett. 457, 3–11 (2008)

    Article  CAS  Google Scholar 

  12. S. Bin Hafiz, M. Scimeca, A. Sahu, D.K. Ko, Colloidal quantum dots for thermal infrared sensing and imaging. Nano Converg. 6, 22 (2019)

    Google Scholar 

  13. J. Hu, Y. Shi, Z. Zhang, R. Zhi, S. Yang, B. Zou, Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots. Chin. Phys. B 28, 020701 (2019)

    Article  CAS  Google Scholar 

  14. J. Qiu, B. Weng, L.L. McDowell, Z. Shi, Low-cost uncooled MWIR PbSe quantum dots photodiodes. RSC Adv. 9, 42516–42523 (2019)

    Article  CAS  Google Scholar 

  15. K. Xu, W. Zhou, Z. Ning, Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors. Small 16, 2003397 (2020)

    Article  CAS  Google Scholar 

  16. V. Wood, M.J. Panzer, J. Chen, M.S. Bradley, J.E. Halpert, M.G. Bawendi, V. Bulović, Inkjet-printed quantum dot–polymer composites for full-color ac-driven displays. Adv. Mater. 21, 2151–2155 (2009)

    Article  CAS  Google Scholar 

  17. I.J. Kramer, J.C. Minor, G. Moreno-Bautista, L. Rollny, P. Kanjanaboos, D. Kopilovic, S.M. Thon, G.H. Carey, K.W. Chou, D. Zhitomirsky, Efficient spray-coated colloidal quantum dot solar cells. Adv. Mater. 27, 116–121 (2015)

    Article  CAS  Google Scholar 

  18. N. Huo, S. Gupta, G. Konstantatos, MoS2–HgTe quantum dot hybrid photodetectors beyond 2 µm. Adv. Mater. 29, 1606576 (2017)

    Article  Google Scholar 

  19. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P.G. De Arquer, F. Gatti, F.H. Koppens, Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012)

    Article  CAS  Google Scholar 

  20. J. Schornbaum, B. Winter, S.P. Schießl, F. Gannott, G. Katsukis, D.M. Guldi, E. Spiecker, J. Zaumseil, Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 24, 5798–5806 (2014)

    Article  CAS  Google Scholar 

  21. X. Song, Y. Zhang, H. Zhang, Y. Yu, M. Cao, Y. Che, J. Wang, J. Yang, X. Ding, J. Yao, Improved photoelectronic performance of graphene, polymer and PbSe quantum dot infrared photodetectors. Mater. Lett. 178, 52–55 (2016)

    Article  CAS  Google Scholar 

  22. Y. Zhang, M. Cao, X. Song, J. Wang, Y. Che, H. Dai, X. Ding, G. Zhang, J. Yao, Multiheterojunction phototransistors based on graphene–PbSe quantum dot hybrids. J. Phys. Chem. C 119, 21739–21743 (2015)

    Article  CAS  Google Scholar 

  23. J. Gao, S.C. Nguyen, N.D. Bronstein, A.P. Alivisatos, Solution-processed, high-speed, and high-quantum-efficiency quantum dot infrared photodetectors. ACS Photon. 3, 1217–1222 (2016)

    Article  CAS  Google Scholar 

  24. H. Zhang, Y. Zhang, X. Song, Y. Yu, M. Cao, Y. Che, J. Wang, J. Yang, H. Dai, G. Zhang, High performance PbSe colloidal quantum dot vertical field effect phototransistors. Nanotechnology 27, 425204 (2016)

    Article  Google Scholar 

  25. K. Xu, X. Xiao, W. Zhou, X. Jiang, Q. Wei, H. Chen, Z. Deng, J. Huang, B. Chen, Z. Ning, Inverted Si: PbS colloidal quantum dot heterojunction-based infrared photodetector. ACS Appl. Mater. Interfaces. 12, 15414–15421 (2020)

    Article  CAS  Google Scholar 

  26. V. Adinolfi, E.H. Sargent, Photovoltage field-effect transistors. Nature 542, 324–327 (2017)

    Article  CAS  Google Scholar 

  27. Y. Shi, Z. Wu, Z. Xiang, P. Chen, C. Li, H. Zhou, X. Dong, J. Gou, J. Wang, Y. Jiang, Silicon-based PbS-CQDs infrared photodetector with high sensitivity and fast response. Nanotechnology 31, 485206 (2020)

    Article  CAS  Google Scholar 

  28. J.M. Pietryga, R.D. Schaller, D. Werder, M.H. Stewart, V.I. Klimov, J.A. Hollingsworth, Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 126, 11752–11753 (2004)

    Article  CAS  Google Scholar 

  29. F.W. Wise, Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. 33, 773–780 (2000)

    Article  CAS  Google Scholar 

  30. N. Guo, L. Xiao, F. Gong, M. Luo, F. Wang, Y. Jia, H. Chang, J. Liu, Q. Li, Y. Wu, Light-driven WSe2-ZnO junction field-effect transistors for high-performance photodetection. Advanced Science 7, 1901637 (2020)

    Article  CAS  Google Scholar 

  31. A. Nag, M.V. Kovalenko, J.-S. Lee, W. Liu, B. Spokoyny, D.V. Talapin, Metal-free inorganic ligands for colloidal nanocrystals: S2–, HS–, Se2–, HSe–, Te2–, HTe–, TeS32–, OH–, and NH2–as surface ligands. J. Am. Chem. Soc. 133, 10612–10620 (2011)

    Article  CAS  Google Scholar 

  32. G.W. Guglietta, B.T. Diroll, E.A. Gaulding, J.L. Fordham, S. Li, C.B. Murray, J.B. Baxter, Lifetime, mobility, and diffusion of photoexcited carriers in ligand-exchanged lead selenide nanocrystal films measured by time-resolved terahertz spectroscopy. ACS Nano 9, 1820–1828 (2015)

    Article  CAS  Google Scholar 

  33. Z. Ning, O. Voznyy, J. Pan, S. Hoogland, V. Adinolfi, J. Xu, M. Li, A.R. Kirmani, J.-P. Sun, J. Minor, Air-stable n-type colloidal quantum dot solids. Nat. Mater. 13, 822–828 (2014)

    Article  CAS  Google Scholar 

  34. J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011)

    Article  CAS  Google Scholar 

  35. W.W. Yu, J.C. Falkner, B.S. Shih, V.L. Colvin, Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem. Mater. 16, 3318–3322 (2004)

    Article  CAS  Google Scholar 

  36. C. Fu, H. Wang, T. Song, L. Zhang, W. Li, B. He, S. Yang, B. Zou, Stability enhancement of PbSe quantum dots via post-synthetic ammonium chloride treatment for a high-performance infrared photodetector. Nanotechnology 27, 065201 (2015)

    Article  Google Scholar 

  37. J.Y. Woo, J.-H. Ko, J.H. Song, K. Kim, H. Choi, Y.-H. Kim, D.C. Lee, S. Jeong, Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe (100). J. Am. Chem. Soc. 136, 8883–8886 (2014)

    Article  CAS  Google Scholar 

  38. C. Pidgeon, C. Ciesla, B. Murdin, Suppression of non-radiative processes in semiconductor mid-infrared emitters and detectors. Prog. Quantum Electron. 21, 361–419 (1997)

    Article  CAS  Google Scholar 

  39. D. Yang, L. Zhang, S. Yang, B. Zou, Influence of the dielectric PMMA layer on the detectivity of pentacene-based photodetector with field-effect transistor configuration in visible region. IEEE Photon. J. 5, 6801709–6801709 (2013)

    Article  Google Scholar 

  40. H. Gutleben, S. Lucas, C. Cheng, W. Choyke, J. Yates Jr., Thermal stability of the methyl group adsorbed on Si (100): CH3I surface chemistry. Surf Sci. 257, 146–156 (1991)

    Article  CAS  Google Scholar 

  41. S. Masala, V. Adinolfi, J.P. Sun, S.D. Gobbo, O. Voznyy, I.J. Kramer, I.G. Hill, E.H. Sargent, The silicon: colloidal quantum dot heterojunction. Adv. Mater. 27, 7445–7450 (2015)

    Article  CAS  Google Scholar 

  42. X. Gong, M. Tong, Y. Xia, W. Cai, J.S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson, A.J. Heeger, High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665–1667 (2009)

    Article  CAS  Google Scholar 

  43. H. Fang, W. Hu, Photogating in low dimensional photodetectors. Adv. Sci.ence 4, 1700323 (2017)

    Google Scholar 

  44. D.V. Talapin, C.B. Murray, PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors. Science 310, 86–89 (2005)

    Article  CAS  Google Scholar 

  45. A. Shabaev, A.L. Efros, A.L. Efros, Dark and photo-conductivity in ordered array of nanocrystals. Nano Lett. 13, 5454–5461 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 61421002) and National Natural Science Foundation of China (No. 61875031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Wu or Xiang Dong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Wu, Z., Shi, Y. et al. High‐performance silicon‐based PbSe-CQDs infrared photodetector. J Mater Sci: Mater Electron 32, 9452–9462 (2021). https://doi.org/10.1007/s10854-021-05609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05609-y

Navigation