Skip to main content
Log in

The influence of Cu ion implantation on the morphology and optical properties of TiO2 nanogranular film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2 nanorods were synthesized by annealing the Cu ion-implanted TiO2 nanogranular film in N2 atmosphere at 900 °C for 6 h. The corresponding morphology and optical properties of the samples were investigated. Experimental results revealed that as the higher diffusion rate of Cu, only when the fluence of Cu ion is larger than 1 × 1016 ions/cm2, the significant TiO2 nanorods could be generated on the surface of the sample. In addition, the optical absorption properties of the TiO2 nanorods were also modified as the presence of abundant Ti3+ and Cu2+. The band gap was narrowed distinctly, which can be ascribed to the doping of Cu elements. Further discussions revealed that the Ti ion implantation is not an essential process, but the formation of TiO2 nanorods is closely related to the Cu ion implantation. The intrinsic mechanism was proposed as aggregation, recrystallization, and extension along the fixed crystal orientation of the TiO2 nanostructure induced by copper oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.

Similar content being viewed by others

References

  1. A. Fujishima, Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  2. A. Fernandes, P. Makoś, Z. Wang, G. Boczkaj, Chem. Eng. J. 391, 123488 (2020)

    Article  CAS  Google Scholar 

  3. F. Bensouici, M. Bououdina, A. Dakhel et al., Appl. Surf. Sci. 395, 110–116 (2017)

    Article  CAS  Google Scholar 

  4. Y. Yu, F. Yang, S. Mao et al., Chem. Phys. Lett. 706, 477–482 (2018)

    Article  CAS  Google Scholar 

  5. B. Sun, Y. Chen, L. Tao et al., ACS Appl. Mater. Interfaces. 11, 2071–2081 (2018)

    Article  Google Scholar 

  6. C. Gao, T. Wei, Y. Zhang et al., Adv. Mater. 31, 1806596 (2019)

    Article  Google Scholar 

  7. A Ghicov, P Schmuki, Chem. Commun. 2791-2808 (2009)

  8. J. Li, X. Liu, Y. Qiao, H. Zhu, C. Ding, Colloids Surf. B: Biointerfaces. 113, 134–145 (2014)

    Article  CAS  Google Scholar 

  9. X. Chen, S.S. Mao, Chem. Rev. 107, 2891–2959 (2007)

    Article  CAS  Google Scholar 

  10. A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515–582 (2008)

    Article  CAS  Google Scholar 

  11. I.S. Cho, Z. Chen, A.J. Forman et al., Nano Lett. 11, 4978–4984 (2011)

    Article  CAS  Google Scholar 

  12. B. Sun, W. Zhao, Y. Liu, P. Chen, J. Mater. Sci. Mater. Electron. 25, 4306–4311 (2014)

    Article  CAS  Google Scholar 

  13. A. Meldrum, R. Haglund Jr., L.A. Boatner, C.W. White, Adv. Mater. 13, 1431–1444 (2001)

    Article  CAS  Google Scholar 

  14. J. Wang, G. Jia, X. Mu, C. Liu, Appl. Phys. Lett. 102, 133102 (2013)

    Article  Google Scholar 

  15. A. Ghicov, J.M. Macak, H. Tsuchiya et al., Nano Lett. 6, 1080–1082 (2006)

    Article  CAS  Google Scholar 

  16. T. Schröder, M.E. Trusheim, M. Walsh et al., Nat. Commun. 8, 1–7 (2017)

    Article  Google Scholar 

  17. W. Li, X. Zhan, X. Song et al., Small. 15, 1901820 (2019)

    Article  Google Scholar 

  18. J. Pacheco, M. Singh, D. Perry et al., Rev. Sci. Instr. 88, 123301 (2017)

    Article  CAS  Google Scholar 

  19. Y. Liu, F. Ren, G. Cai et al., Mater. Res. Bull. 51, 376–380 (2014)

    Article  CAS  Google Scholar 

  20. F. Ren, X.D. Zhou, Y.C. Liu et al., Nanotechnology. 24, 255603 (2013)

    Article  Google Scholar 

  21. R.V. Hariwal, H.K. Malik, A. Negi, A. Kandasami, RSC Adv. 8, 6278–6287 (2018)

    Article  CAS  Google Scholar 

  22. M. Koleva, N. Nedyalkov, R. Nikov et al., Appl. Surf. Sci. 508, 145227 (2020)

    Article  Google Scholar 

  23. X. Mu, X. Liu, X. Wang, H. Dai, C. Liu, Nanotechnology. 29, 025601 (2017)

    Article  Google Scholar 

  24. G. Wang, Y. Sun, Y. Jing, C. Liu, H. Dai, J. Phys. D: Appl. Phys. 53, 185103 (2020)

    Article  CAS  Google Scholar 

  25. O. Diwald, T.L. Thompson, E.G. Goralski, S.D. Walck, J.T. Yates, J. Phys. Chem. B. 108, 52–57 (2004)

    Article  CAS  Google Scholar 

  26. K. Oyoshi, T. Tagami, S. Tanaka, Japan. J. Appl. Phys. 30, 1854 (1991)

    Article  CAS  Google Scholar 

  27. G. Jia, J. Wang, L. Zhang, H. Liu, R. Xu, C. Liu, EPL (Europhysics Letters). 101, 57005 (2013)

    Article  Google Scholar 

  28. U Kreibig, M Vollmer (1995) Optical Properties of Metal ClustersSpringer,

  29. G Mattei, P Mazzoldi, H Bernas (2009) Materials Science with Ion BeamsSpringer,

  30. R.L. Penn, J.F. Banfield, Science. 281, 969–971 (1998)

    Article  CAS  Google Scholar 

  31. H. Yin, Z. Tang, Chem. Soc. Rev. 45, 4873–4891 (2016)

    Article  CAS  Google Scholar 

  32. J. Zhang, F. Huang, Z. Lin, Nanoscale. 2, 18–34 (2010)

    Article  Google Scholar 

  33. C. Yang, Y. Hirose, S. Nakao, N.L.H. Hoang, T. Hasegawa, Appl. Phys. Lett. 101, 052101 (2012)

    Article  Google Scholar 

  34. H. Zhang, C. Liang, J. Liu, Z. Tian, G. Wang, W. Cai, Langmuir. 28, 3938–3944 (2012)

    Article  CAS  Google Scholar 

  35. V. Solanki, S. Majumder, I. Mishra, S.R. Joshi, D. Kanjilal, S. Varma, Radiat Effects Defects Solids. 168, 518–524 (2013)

    Article  CAS  Google Scholar 

  36. G. Colon, M. Maicu, M.S. Hidalgo, J. Navío, Appl. Catal. B: Environ. 67, 41–51 (2006)

    Article  CAS  Google Scholar 

  37. B. Van Hassel, A. Burggraaf, Appl. Phys. A. 53, 155–163 (1991)

    Article  Google Scholar 

  38. P. Kubelka, Zeitschrift fur technische Physik. 12, 593–601 (1931)

    Google Scholar 

  39. M. Liu, X. Qiu, M. Miyauchi, K. Hashimoto, Chem. Mater. 23, 5282–5286 (2011)

    Article  CAS  Google Scholar 

  40. S.K. Pathak, A. Abate, P. Ruckdeschel et al., Adv. Funct. Mater. 24, 6046–6055 (2014)

    Article  CAS  Google Scholar 

  41. F. Giordano, A. Abate, J.P.C. Baena et al., Nat. Commun. 7, 1–6 (2016)

    Google Scholar 

  42. M. Wang, F. Ren, G. Cai, Y. Liu, S. Shen, L. Guo, Nano Res. 7, 353–364 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (NOs. 11175129 and 11535008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlong Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(doc 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Jing, Y., Dai, H. et al. The influence of Cu ion implantation on the morphology and optical properties of TiO2 nanogranular film. J Mater Sci: Mater Electron 32, 7455–7463 (2021). https://doi.org/10.1007/s10854-021-05458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05458-9

Navigation