Skip to main content

Advertisement

Log in

Samarium and gadolinium-co-doped lead borate glasses for luminescent applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Sm3+ and Gd3+-co-doped lead borate glasses having composition 65B2O3–(35–2x)PbO–xSm2O3xGd2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%) was prepared through melt quenching technique. Physical, structural and optical properties were investigated and analyzed. Amorphous nature of the prepared samples was confirmed by X-ray diffraction (XRD) spectra. Fourier Transform Infrared (FTIR) spectra revealed incorporation of Pb in borate glass network which signifies structural changes. UV–Visible absorption spectra consisted of several absorption peaks corresponding to the 4f–4f transitions of Sm3+ luminescent center from 6H5/2 ground state to various excited energy levels. Optical bandgap of the prepared glass samples evaluated using Tauc’s method had also been supported by newly developed derivation of absorption spectrum fitting (DASF) method. Photoluminescence emission spectra of the prepared glass samples exhibited wide emission in visible band of Sm3+ ions and characteristic prominent peak (4G5/26H7/2) at about 597 nm under ultraviolet excitation. Energy transfer mechanism from Gd3+ to Sm3+ and the process of energy down conversion witnessed in prepared glass samples indicated the potential use of rare earth-co-doped lead borate glass in high-energy radiation sensing and laser applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Annapoorani, Ch. Basavapoornima, N. Suriya Murthy, K. Marimuthu, Investigations on structural and luminescence behavior of Er3+ doped lithium zinc borate glasses for lasers and optical amplifier applications. J. Non Cryst. Solids 447, 273–282 (2016)

    Article  CAS  Google Scholar 

  2. M. Prokic, Lithium borate solid TL detectors. Radiat. Measure. 33, 393–396 (2001)

    Article  CAS  Google Scholar 

  3. I.N. Ogorodnikov, N.E. Poryvai, Thermoluminescence kinetics of lithium borate crystals. J. Lumin. 132, 1318–1324 (2012)

    Article  CAS  Google Scholar 

  4. S. Tanabe, Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. C. R. Chim. 5, 815–824 (2002)

    Article  CAS  Google Scholar 

  5. M. Bengisu, Borate glasses for scientific and industrial applications: a review. J. Mater. Sci. 51, 2199–2242 (2016)

    Article  CAS  Google Scholar 

  6. H.S. Liu, T.S. Chin, S.W. Yung, FTIR and XPS studies of low-melting PbO-ZnO-P2O5 glasses. J. Chem. Phys. 50, 1–10 (1997)

    Article  CAS  Google Scholar 

  7. P. Kaur, D. Singh, T. Singh, Sm3+ and Gd3+ co-doped lead phosphate glasses for γ-rays shielding and sensing. J. Lumin. 209, 74–88 (2019)

    Article  CAS  Google Scholar 

  8. W.H. Dumbaugh, J.C. Lapp, Heavy-metal oxide glasses. J. Am. Ceram. Soc. 75, 2315–2326 (2005)

    Article  Google Scholar 

  9. T. Satyanarayana, I.V. Kityk, M.G. Brik, V.R. Kumar, N. Veeraiah, Fluorescence features of Tm3+ ions in PbO–Sb2O3–B2O3 glass ceramics. Phys. B 405, 1872–1880 (2010)

    Article  CAS  Google Scholar 

  10. Y.NCh. Ravi Babu, P. Sree Ramnaik, A. Suresh Kumar, Photoluminescence features of Ho3+ ion doped PbO-Bi2O3-borophosphate glass systems. J. Lumin. 143, 510–516 (2013)

    Article  CAS  Google Scholar 

  11. K. Mariselvam, R.A. Kumar, Borate glasses for luminescence applications-potential materials for white LEDs and laser sources. Univers. J. Chem. 4, 55–64 (2016)

    Article  Google Scholar 

  12. I. Pal, A. Agarwal, S. Sanghi, M.P. Aggarwal, Structural, absorption and fluorescence spectral analysis of Pr3+ ions doped zinc bismuth borate glasses. J. Alloys Compd. 509, 7625–7631 (2011)

    Article  CAS  Google Scholar 

  13. H. Lin, E.Y.B. Pun, L.H. Huang, X.R. Liu, Optical and luminescence properties of Sm3+ -doped cadmium–aluminum–silicate glasses. Appl. Phys. Lett. 80, 2642 (2002)

    Article  CAS  Google Scholar 

  14. M.R. Dousti, S.K. Ghoshal, R.J. Amjad, M.R. Sahar, F. Nawaz, R. Arifin, Structural and optical study of samarium doped lead zinc phosphate glasses. Opt. Commun. 300, 204–209 (2013)

    Article  CAS  Google Scholar 

  15. W.A. Pisarski, J. Pisarska, M. Maczka, R. Lisiecki, L. Grobelny, T. Goryczka, G. Dominiak-Dzik, W. Ryba-Romanowski, Rare earth-doped lead borate glasses and transparent glass–ceramics: structure–property relationship. Spectrochimica Acta A 79, 696–700 (2011)

    Article  CAS  Google Scholar 

  16. W.A. Piasarki, T. Goryczka, B. Wodecka-Dus, M. Plonska, J. Piskrka, Structure and properties of rare earth-doped lead borate glasses. Mater. Sci. Eng. B 122, 94–99 (2005)

    Article  Google Scholar 

  17. H. Lin, E.Y.B. Pun, X. Wang, X. Liu, Intense visible fluorescence and energy transfer in Dy3+, Tb3+, Sm3+ and Eu3+ doped rare-earth borate glasses. J. Alloy Compd. 390, 197–201 (2005)

    Article  CAS  Google Scholar 

  18. L. Zhang, M. Peng, G. Dong, J. Qiu, Spectroscopic properties of Sm3+-doped phosphate Glasses. J. Mater. Res. 27, 2111–2115 (2012)

    Article  CAS  Google Scholar 

  19. Y.S.M. Alajerami, K.M. Abushab, S.I. Alagha, M.H.A. Mhareb, A. Saidu, F.S. Kodeh, Kh. Ramadan, Physical and optical properties of sodium borate glasses doped with Dy ions. Int. J. Modern Phys. B 31, 1750171-1-1750171–11 (2017)

    Article  Google Scholar 

  20. P. Kaur, D. Singh, T. Singh, Optical, photoluminescence and physical properties of Sm3+ doped lead alumino phosphate glasses. J. Non Cryst. Solids 452, 87–92 (2016)

    Article  CAS  Google Scholar 

  21. D. Singh, R. Singh, B. Singh, Preparation and characterization of transition metal oxide doped borate glasses. Int. J. Recent Sci. Res. 8, 17192–17195 (2017)

    Article  Google Scholar 

  22. D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 119, 273–279 (2015)

    Article  CAS  Google Scholar 

  23. A.A. Ali, Y.S. Rammah, R. El-Mallawany, D. Souri, FTIR and UV spectra of pentaternary borate glasses. Measurement (Elsevier) 105, 72–77 (2017)

    Google Scholar 

  24. Y. Zhou, J. Lin, S. Wang, Energy transfer and upconversion luminescence properties of Y2O3: Sm and Gd2O3: Sm phosphores. J. Solid State Chem. 171, 391–395 (2003)

    Article  CAS  Google Scholar 

  25. Y.K. Sharma, P. Goyal, S. Pal, U.C. Bind, Optical and physical analysis of Nd3+ doped borosilicate glasses. J. Mater. Sci. Eng. B 5, 406–417 (2015)

    CAS  Google Scholar 

  26. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979).

    Google Scholar 

  27. S.K.J. Al-Ani, A.A. Higazy, Study of optical absorption edges in MgO-P2O5 glasses. J. Mater. Sci. 26, 3670–3674 (1991)

    Article  CAS  Google Scholar 

  28. J. Tauc, Band tails in amorphous semiconductors. J. Non-Cryst. Solids 97, 149–154 (1987)

    Article  Google Scholar 

  29. Y. Shahmoradi, D. Souri, Growth of silver nanoparticles within the tellurovanadate amorphous matrix: Optical band gap and band tailing properties, beside the Williamson-Hall estimation of crystallite size and lattice strain. Ceram. Int. 45, 7857–7864 (2019)

    Article  CAS  Google Scholar 

  30. V. Dimitrov, S. Sakka, Linear and nonlinear optical properties of simple oxides. II. J. Appl. Phys. 79, 1741–1745 (1996)

    Article  CAS  Google Scholar 

  31. H. Rawson, Properties and Applications of Glasses, vol. 3 (Elsevier, Amsterdam, 1980).

    Google Scholar 

  32. K. El-Egili, H. Doweidar, Y.M. Moustafa, I. Abbas, Structure and some physical properties of PbO–P2O5 glasses. Phys. B 339, 237–245 (2003)

    Article  CAS  Google Scholar 

  33. Y. Cheng, H. Xiao, W. Guo, W. Guo, Structure and crystallization kinetics of PbO-B2O3 glasses. Ceram. Int. 33, 1341–1347 (2007)

    Article  CAS  Google Scholar 

  34. E.I. Kamitsos, A.P. Patsis, M.A. Karakassides, G.D. Chryssikos, Infrared reflectance spectra of lithium borate glasses. J. Non-Cryst. Solids 126, 52–67 (1990)

    Article  CAS  Google Scholar 

  35. P. Herve, L.K.J. Vandamme, General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technol. 35, 609–615 (1994)

    Article  CAS  Google Scholar 

  36. P.P. Pawar, S.R. Munishwar, R.S. Gedam, Physical and optical properties of Dy3+/Pr3+ Co-doped litium borate glasses for W-LED. J. Alloys Compd. 660, 347–355 (2016)

    Article  CAS  Google Scholar 

  37. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 49, 4424 (1968)

    Article  CAS  Google Scholar 

  38. B.C. Jamalaiah, J.S. Kumar, A.M. Babu, T. Suhasini, L.R. Moorthy, Photoluminescence properties of Sm3+ in LBTAF glasses. J. Lumin. 129, 363–369 (2009)

    Article  CAS  Google Scholar 

  39. L. Kong, X. Xiao, J. Yu, D. Mao, G. Lu, Color-tunable luminescence properties of Sm3+/Dy3+ co-doped NaLa(MoO4)2 phosphors and their energy transfer mechanism. J. Mater. Sci. 52, 6310–6321 (2017)

    Article  CAS  Google Scholar 

  40. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preet Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Singh, S., Singh, T. et al. Samarium and gadolinium-co-doped lead borate glasses for luminescent applications. J Mater Sci: Mater Electron 32, 6900–6911 (2021). https://doi.org/10.1007/s10854-021-05396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05396-6

Navigation