Skip to main content
Log in

Excellent microwave absorption performance from matched magnetic-dielectric properties of LSMO@RGO Nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lightweight and ultrabroad electromagnetic wave absorption materials are urgently demanded to address electromagnetic (EM) interference or pollution. However, the design of excellent EM wave absorbents still remains a challenge. Herein, La0.7Sr0.3MnO3/reduced graphene oxide (LSMO@RGO) nanocomposites was successfully prepared by a facial two-step method. Three different radios of LSM to RGO (1:2, 1:1, 2:1) and four different addition (3%, 5%, 8%, 10%) for each radio were investigated, and the matched magnetic-dielectric properties of LSMO@RGO nanocomposites endows the excellent microwave absorption performance. The maximum reflection loss of LSMO@RGO nanocomposites reach as strong as −45.71 dB at a 16.47 GHz with a thickness of 2.4 mm with the addition of 5 wt.%. The ultrabroad effective absorption bandwidth of LSMO@RGO nanocomposites also can reach 7.31 GHz with a thickness of 2.8 mm. The excellent microwave absorption performance is mainly originated from the magnetic and dielectric losses as well as well-matched impedance matching. The excellent microwave absorption performance of LSMO@RGO nanocomposites especially for ultrabroad effective absorption bandwidth offer strong potentials for the design of high-performance microwave absorption materials. The material system of LSM and graphene composite was prepared for the first time, the EM absorbing properties were investigated, and this material with simple preparation process, broadband and high absorption is highly expected to be industrialized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Liu, Y. Huang, X. Zhang, Synthesis, characterization and excellent electromagnetic wave absorption properties of graphene/poly (3,4-ethylenedioxythiophene) hybrid materials with Fe3O4 nanoparticles. J. Alloys Comp. 617, 511–517 (2014)

    Article  CAS  Google Scholar 

  2. K. S. Novoselov, A. K. G. Electric Field Effect in Atomically Thin Carbon Films. (2014)

  3. X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, H. Xue, Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 1, 765–777 (2013)

    Article  CAS  Google Scholar 

  4. A.P. Singh, P. Garg, F. Alam, K. Singh, R.B. Mathur, R.P. Tandon, A. Chandra, S.K. Dhawan, Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 50, 3868–3875 (2012)

    Article  CAS  Google Scholar 

  5. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)

    CAS  Google Scholar 

  6. T. Wang, Y. Li, L. Wang, C. Liu, S. Geng, X. Jia, F. Yang, L. Zhang, L. Liu, B. You, X. Ren, H. Yang, Synthesis of graphene/α-Fe2O3composites with excellent electromagnetic wave absorption properties. RSC Adv. 5, 60114–60120 (2015)

    Article  CAS  Google Scholar 

  7. Y.-F. Pan, G.-S. Wang, Y.-H. Yue, Fabrication of Fe3O4@SiO2@RGO nanocomposites and their excellent absorption properties with low filler content. RSC Adv. 5, 71718–71723 (2015)

    Article  CAS  Google Scholar 

  8. Y. Ding, L. Zhang, Q.L. Liao, G.J. Zhang, S. Liu, Y. Zhang, Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 9, 2018–2025 (2016)

    Article  CAS  Google Scholar 

  9. M. Wang, G. Ji, B. Zhang, D. Tang, Y. Yang, Y. Du, Controlled synthesis and microwave absorption properties of Ni0.6Zn0.4Fe2O4/PANI composite via an in-situ polymerization process. J. Mag. Mag. Mater. 377, 52–58 (2015)

    Article  CAS  Google Scholar 

  10. Y. Ding, Z. Zhang, B. Luo, Q. Liao, S. Liu, Y. Liu, Y. Zhang, Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. Nano Res. 10, 980–990 (2016)

    Article  Google Scholar 

  11. M. Fu, Q. Jiao, Y. Zhao, Preparation of NiFe2O4 nanorod–graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties. J Mater Chem A 1, 5577 (2013)

    Article  CAS  Google Scholar 

  12. S. Zhang, Q. Jiao, J. Hu, J. Li, Y. Zhao, H. Li, Q. Wu, Vapor diffusion synthesis of rugby-shaped CoFe2O4/graphene composites as absorbing materials. J. Alloys Comp. 630, 195–201 (2015)

    Article  CAS  Google Scholar 

  13. L. Tan, Q. Liu, D. Song, X. Jing, J. Liu, R. Li, S. Hu, L. Liu, J. Wang, Uranium extraction using a magnetic CoFe2O4–graphene nanocomposite: kinetics and thermodynamics studies. New J. Chem. 39, 2832–2838 (2015)

    Article  CAS  Google Scholar 

  14. Y. Ding, Q. Liao, S. Liu, H. Guo, Y. Sun, G. Zhang, Y. Zhang, Reduced graphene oxide functionalized with cobalt ferrite nanocomposites for enhanced efficient and lightweight electromagnetic wave absorption. Sci. Rep. 6, 32381 (2016)

    Article  CAS  Google Scholar 

  15. Z. Zhu, X. Sun, G. Li, H. Xue, H. Guo, X. Fan, X. Pan, J. He, Microwave-assisted synthesis of graphene–Ni composites with enhanced microwave absorption properties in Ku-band. J. Magn. Magn. Mater. 377, 95–103 (2015)

    Article  CAS  Google Scholar 

  16. Y. Wang, H. Guan, S. Du, Y. Wang, A facile hydrothermal synthesis of MnO2nanorod–reduced graphene oxide nanocomposites possessing excellent microwave absorption properties. RSC Adv. 5, 88979–88988 (2015)

    Article  CAS  Google Scholar 

  17. B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, Preparation and electromagnetic wave absorption properties of novel dendrite-like NiCu alloy composite. RSC Adv. 5, 42587–42590 (2015)

    Article  CAS  Google Scholar 

  18. W.M. Choi, K.-S. Shin, H.S. Lee, D. Choi, K. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, S.-W. Kim, Selective growth of ZnO nanorods on SiO2/Si substrates using a graphene buffer layer. Nano Res. 4, 440–447 (2011)

    Article  CAS  Google Scholar 

  19. H.Y. Yue, S. Huang, J. Chang, C. Heo, F. Yao, S. Adhikari, F. Gunes, L.C. Liu, T.H. Lee, E.S. Oh, B. Li, J.J. Zhang, T.Q. Huy, N.V. Luan, Y.H. Lee, ZnO nanowire arrays on 3D hierachical graphene foam: biomarker detection of Parkinson's disease. ACS nano 8, 1639–1646 (2014)

    Article  CAS  Google Scholar 

  20. L. Zhang, X. Zhang, G. Zhang, Z. Zhang, S. Liu, P. Li, Q. Liao, Y. Zhao, Y. Zhang, Investigation on the optimization, design and microwave absorption properties of reduced graphene oxide/tetrapod-like ZnO composites. RSC Adv. 5, 10197–10203 (2015)

    Article  CAS  Google Scholar 

  21. B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Chen, R. Zhang, Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties. RSC Adv. 5, 9806–9814 (2015)

    Article  CAS  Google Scholar 

  22. P. Bhattacharya, S. Dhibar, M.K. Kundu, G. Hatui, C.K. Das, Graphene and MWCNT based bi-functional polymer nanocomposites with enhanced microwave absorption and supercapacitor property. Mater. Res. Bull. 66, 200–212 (2015)

    Article  CAS  Google Scholar 

  23. W.W. Liu, H. Li, Q.P. Zeng, H.N. Duan, Y.P. Guo, X.F. Liu, C.Y. Sun, H.Z. Liu, Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J Mater Chem A 3, 3739–3747 (2015)

    Article  CAS  Google Scholar 

  24. C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, X. Han, Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces 7, 20090–20099 (2015)

    Article  CAS  Google Scholar 

  25. R. Kumaran, M. Alagar, S. Dinesh Kumar, V. Subramanian, K. Dinakaran, Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms. Appl. Phys. Lett. 107, 113107 (2015)

    Article  Google Scholar 

  26. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  27. J. Wu, W. Pisula, K. Mullen, Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)

    Article  CAS  Google Scholar 

  28. K.P. Loh, Q. Bao, P.K. Ang, J. Yang, The chemistry of graphene. J. Mater. Chem. 20, 2277 (2010)

    Article  CAS  Google Scholar 

  29. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98, 072906 (2011)

    Article  Google Scholar 

  30. G.S. Wen, X.C. Zhao, Y. Liu, J.F. Ma, Influence of Fe–B addition on electromagnetic wave absorption properties of RGO composite. J. Mater. Sci.: Mater. Electron. 29, 10044–10053 (2018)

    CAS  Google Scholar 

  31. G.S. Wen, X.C. Zhao, Y. Liu, G.H. Sun, Y.C. Wang, Simple, controllable fabrication and electromagnetic wave absorption properties of hollow Ni nanosphere. J. Mater. Sci. Mater. Electron. 30, 2166–2176 (2019)

    Article  CAS  Google Scholar 

  32. G.S. Wen, X.C. Zhao, Y. Liu, H. Zhang, C. Wang, Facile synthesis of RGO/Co@Fe@Cu hollow nanospheres with efficient broadband electromagnetic wave absorption. Chem. Eng. J. 172, 1–11 (2019)

    Article  Google Scholar 

  33. J.P. Chen, H. Jia, Z. Liu et al., Construction of C-Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption[J]. Carbon 164, 59–68 (2020)

    Article  CAS  Google Scholar 

  34. H. Lv, Y. Li, Z. Jia et al., Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultra-wideband EM absorption[J]. Comp. Part B: Eng. 196, 108122 (2020)

    Article  CAS  Google Scholar 

  35. M.S. Osofsky, B. Nadgorny, R.J. Soulen, P. Broussard, M. Rubinstein, J. Byers, G. Laprade, Y.M. Mukovskii, D. Shulyatev, A. Arsenov, Measurement of the spin-polarization of LaSrMnO. High Temp. Superconduct. 483, 407–411 (1999)

    CAS  Google Scholar 

  36. J.H. Kim, R.H. Song, S.H. Hyun, Effect of slurry-coated LaSrMnO(3) on the electrical property of Fe-Cr alloy for metallic interconnect of SOFC. Solid State Ion. 174, 185–191 (2004)

    Article  CAS  Google Scholar 

  37. Samoilenko, Z. A.;Okunev, V. D.;Pushenko, E. I.;Pafomov, N. N.;Szymczak, R.;Szymczak, H.; Lewandowski, S. J. Disorder-order structural transition in amorphous LaSrMnO films. J. Phys.-Condens. Matter. 19 (2007)

  38. R.B. Yang, C.Y. Tsay, W.F. Liang, C.K. Lin, Microwave absorbing properties of La0.7Sr0.3MnO3 composites with negative magnetic susceptibility. J. Appl. Phys. 107, 09523 (2010)

    Article  Google Scholar 

  39. V.D. Okunev, Z.A. Samoilenko, T.A. D’yachenko, R. Szymczak, S.J. Lewandowski, H. Szymczak, M. Baran, P. Gierlowski, Changes in the electronic, optical, and magnetic properties of LaSrMnO films upon transition from the rhombohedral phase to the orthorhombic phase. Physics of the Solid State 46, 1895–1905 (2004)

    Article  CAS  Google Scholar 

  40. C. Sun, U. Stimming, Recent anode advances in solid oxide fuel cells. J. Power Sour. 171(2), 247–260 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by State Grid Corporation of China science and technology project (SGGR0000DWJS1801137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guosheng Wen or Zhixiang Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Xu, R., Wen, G. et al. Excellent microwave absorption performance from matched magnetic-dielectric properties of LSMO@RGO Nanocomposites. J Mater Sci: Mater Electron 31, 16661–16670 (2020). https://doi.org/10.1007/s10854-020-04220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04220-x

Navigation