Skip to main content
Log in

Epoxy/ferrite nanocomposites as microwave absorber materials: effect of multilayered structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, different ferrite-type nanoparticles (Ni0.5Zn0.5Fe2O4, NiFe2O4 and Fe3O4) were incorporated into an epoxy resin to obtain composites loaded with 20 and 40 wt% of filler. The morphology of these monolayered composites was investigated by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), which allow identifying a fractal structure of the ferrite-based filler with rough surface. The electromagnetic properties of the monolayer composites with 1 mm thickness were evaluated by the transmission line method in X-band (8.2–12.4 GHz), whose better response in terms of reflection loss was obtained for the composite filled with Ni0.5Zn0.5Fe2O4. Epoxy-based composites containing 20 and 40 wt% of Ni0.5Zn0.5Fe2O4 in the form of plaques were arranged in two types of three-layered structures: (i) stacked monolayers and (ii) low dielectric spacer sandwiches between monolayers (air, honeycomb and foam), whose structure sequence was built based on the reflectivity simulation. The best system, designed by mathematical simulation and experimental results, consisted of ER/NiZn(40)–honeycomb–ER/NiZn(20) arrangement, which presented RL of around − 40 dB at a frequency of 8.75 GHz. Broadband with > 90% attenuation (minimum of − 10 dB) with band width of around 1.2 GHz and minimum RL ≈ 20 dB (Eabs ≈ 99%) was achieved for both three-layered structures contain in PU foam or honeycomb as low dielectric spacer. The ferrite-based multilayer structures with only 6 mm of thickness constitute promising absorbing materials for applications in both civil and military fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F.M. Idris, M. Hashim, Z. Abbas, I. Ismail, R. Nazlan, I.R. Ibrahim, J. Magn. Magn. Mater. 405, 197–208 (2016)

    CAS  Google Scholar 

  2. J. Choi, H.T. Jung, Compos. Struct. 122, 166–171 (2015)

    Google Scholar 

  3. X. Huang, J. Zhang, M. Lai, T. Sang, J. Alloys Compd. 627, 367–373 (2015)

    CAS  Google Scholar 

  4. A. Ashraf, M. Tariq, K. Naveed, A. Kausar, Z. Iqbal, Z.M. Khan, L. Khan, Polym. Eng. Sci. 54, 2508–2514 (2014)

    CAS  Google Scholar 

  5. A. Shah, Y. Wang, H. Huang, L. Zhang, F. Xue, Y. Duan, X. Dong, Z. Zhang, Compos. Struct. 131, 1132–1141 (2015)

    Google Scholar 

  6. J.H. Lin, Z.I. Lin, Y.J. Pan, C.L. Huang, C.K. Chen, C.W. Lou, Composites B 89, 424–431 (2016)

    CAS  Google Scholar 

  7. H. Tian, H.T. Liu, H.F. Cheng, Compos. Sci. Technol. 90, 202–208 (2014)

    CAS  Google Scholar 

  8. A. Teber, I. Unver, H. Kavas, B. Aktas, R. Bansal, J. Magn. Magn. Mater. 406, 228–232 (2016)

    CAS  Google Scholar 

  9. L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, V.K. Varadan, Microwave Electronics: Measurement and Materials Characterization (Wiley, Chichester, 2004), pp. 5–24

    Google Scholar 

  10. J. Huo, L. Wang, H. Yu, J. Mater. Sci. 44, 3917–3927 (2009)

    CAS  Google Scholar 

  11. P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, L.B. Kong, J. Alloys Compd. 701, 841–849 (2017)

    CAS  Google Scholar 

  12. S.E. Lee, J.H. Kang, C.G. Kim, Compos. Struct. 76, 397–405 (2006)

    Google Scholar 

  13. W. Li, M. Chen, Z. Zeng, H. Jin, Y. Pei, Z. Zhang, Compos. Sci. Technol. 145, 10–14 (2017)

    CAS  Google Scholar 

  14. Q. Zhou, X. Yin, F. Ye, X. Liu, L. Cheng, L. Zhang, Mater. Des. 123, 46–53 (2017)

    CAS  Google Scholar 

  15. K. Park, S. Lee, C. Kim, J. Han, Compos. Sci. Technol. 66, 576–584 (2006)

    CAS  Google Scholar 

  16. H. Peng, X. Wang, T.T. Li, S.Y. Huang, L. Wu, C.W. Lou, J.H. Lin, J. Sandw. Struct. Mater. 21, 2512–2526 (2019)

    CAS  Google Scholar 

  17. P. Wang, Y. Zhang, H. Chen, Y. Zhou, F. Jin, H. Fan, Compos. Sci. Technol. 162, 33–48 (2018)

    Google Scholar 

  18. S. Xie, Z. Ji, Y. Yang, G. Hou, J. Wang, J. Build. Eng. 7, 217–223 (2016)

    Google Scholar 

  19. P. Bollen, N. Quievy, C. Detrembleur, J.M. Thomassin, L. Monnereau, C. Bailly, I. Huynen, T. Pardoen, Mater. Des. 89, 323–334 (2016)

    CAS  Google Scholar 

  20. N.N. Jiang, Y. Yang, Y.X. Zhang, J.P. Zhou, P. Liu, C.Y. Deng, J. Magn. Magn. Mater. 401, 370–377 (2016)

    CAS  Google Scholar 

  21. J.C. Aphesteguy, A. Damiani, D. Di Giovanni, S.E. Jacobo, Physica B 404, 2713–2716 (2009)

    CAS  Google Scholar 

  22. M. Pardavi-Horvath, J. Magn. Magn. Mater. 215, 171–183 (2000)

    Google Scholar 

  23. K.H. Wu, T.H. Ting, C.I. Liu, C.C. Yang, J.S. Hsu, Compos. Sci. Technol. 68, 132–139 (2008)

    CAS  Google Scholar 

  24. P. Smitha, I. Singh, M. Najim, R. Panwar, D. Singh, V. Agarwala, G.D. Varma, J. Mater. Sci. Mater. Electron. 27, 7731–7737 (2016)

    CAS  Google Scholar 

  25. A.T.Q. Luong, D.V. Nguyen, Mater. Express 9, 344–350 (2019)

    CAS  Google Scholar 

  26. Y.J. Zhou, Y.Q. Pang, H.F. Cheng, Chin. Phys. B 22, 015021–15025 (2013)

    Google Scholar 

  27. C. Wei, X. Shen, F. Song, Y. Zhu, Y. Wang, Mater. Des. 35, 363–368 (2012)

    CAS  Google Scholar 

  28. A.R. de Oliveira, A. Abrishamkar, E.M. Veloso, F.C. de Oliveira, J.G. Da Silva, J.R. Pereira, J.R. Pereira, R. Diniz, A.M.L. Denadai, Ceram. Int. 43, 7436–7442 (2017)

    Google Scholar 

  29. M.R. Meshram, N.K. Agrawal, B. Sinha, P.S. Misra, J. Magn. Magn. Mater. 271, 207–214 (2004)

    CAS  Google Scholar 

  30. D.Y. Kim, Y.C. Chung, T.W. Kang, H.C. Kim, IEEE Trans. Magn. 32, 555–558 (1996)

    CAS  Google Scholar 

  31. A. Kumar, S. Singh, D. Singh, IOP Conf. Ser. Mater. Sci. Eng. 234, 012009 (2017)

    Google Scholar 

  32. Z. Fang, S. Wang, X. Kong, Q. Liu, J. Mater. Sci. Mater. Electron. 31, 3996–4005 (2020)

    CAS  Google Scholar 

  33. Z. Hou, J. Xiang, X. Zhang, L. Gong, J. Mi, X. Shen, K. Zhang, J. Mater. Sci. Mater. Electron. 29, 12258–12268 (2018)

    CAS  Google Scholar 

  34. K.C. Tripathi, S.M. Abbas, P.S. Alegaonkar, R.B. Sharma, Int. J. Adv. Res. Sci. Eng. Technol. 2, 463–468 (2015)

    Google Scholar 

  35. R. Peymanfar, M. Rahmanisaghieh, Mater. Res. Express 5, 105012 (2018)

    Google Scholar 

  36. J. Luo, Y. Zuo, P. Shen, Z. Yan, K. Zhang, RSC Adv. 7, 36433–36443 (2017)

    CAS  Google Scholar 

  37. C.H. Phan, M. Mariatti, Y.H. Koh, J. Magn. Magn. Mater. 401, 472–478 (2016)

    CAS  Google Scholar 

  38. H. Zhu, Y. Yang, A. Sheng, H. Duan, G. Zhao, Y. Liu, Appl. Surf. Sci. 469, 1–9 (2019)

    CAS  Google Scholar 

  39. Y. Xu, Y. Yang, D.X. Yan, H. Duan, G. Zhao, Y. Liu, ACS Appl. Mater. Interfaces 10, 19143–19152 (2018)

    CAS  Google Scholar 

  40. J. Feng, Y. Zhang, P. Wang, H. Fan, Composites B 99, 465–471 (2016)

    CAS  Google Scholar 

  41. G. Li, T. Xie, S. Yang, J. Jin, J. Jiang, J. Phys. Chem. C 112, 9196–9201 (2012)

    Google Scholar 

  42. Y. Huang, Y. Yang, Z. Li, C. Shen, C. He, J. Phys. Chem. C 118, 26027–26032 (2014)

    CAS  Google Scholar 

  43. A.A. Khurram, M.A. Raza, P. Zhou, T. Subhani, J. Sandw. Struct. Mater. 18, 739–753 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Fundação de Apoio à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) and to the National Synchrotron Light Laboratory (LNLS, Campinas, Brazil) for the SAXS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tamara Indrusiak or Bluma G. Soares.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indrusiak, T., Pereira, I.M., Heitmann, A.P. et al. Epoxy/ferrite nanocomposites as microwave absorber materials: effect of multilayered structure. J Mater Sci: Mater Electron 31, 13118–13130 (2020). https://doi.org/10.1007/s10854-020-03863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03863-0

Navigation