Skip to main content
Log in

Development and fabrication of highly flexible, stretchable, and sensitive strain sensor for long durability based on silver nanoparticles–polydimethylsiloxane composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, silver nanoparticles (AgNPs) conductive filler was attached on polydimethylsiloxane (PDMS) substrate to produce resistive-type strain sensors. The sandwich-structured-like PDMS covered AgNPs strain sensors (Ag-PDMS) and AgNPs modified PDMS composite strain sensors (Ag@PDMS) were fabricated by a drop-casting method. The effect of AgNPs loading such as 0.20 wt%, 0.25 wt%, and 0.30 wt% with PDMS was investigated and electromechanical performance were compared between Ag-PDMS and Ag@PDMS composite strain sensors. Based on the strain performance, the gauge factor of strain sensor fabricated with AgNPs loading with 0.25 wt% in PDMS (Ag0.25@PDMS) composite revealed the gauge factor of 10.08 with a strain range of 70%, which demonstrated fast time response, good stretchability, durability, and repeatability. Ag0.25@PDMS composite strain sensor fabricated in the present study is able to be used in finger motion detection, which indicates the capability of the sensor to be used for human body motion capture and other highly sensitive strain-sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Wang, S. Liu, L. Shu, X.-M. Tao, Low-dimensional carbon based sensors and sensing network for wearable health and environmental monitoring. Carbon 121, 353–367 (2017). https://doi.org/10.1016/j.carbon.2017.06.006

    Article  CAS  Google Scholar 

  2. X. Mo, H. Zhou, W. Li, Z. Xu, J. Duan, L. Huang, B. Hu, J. Zhou, Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 65, 104033 (2019). https://doi.org/10.1016/j.nanoen.2019.104033

    Article  CAS  Google Scholar 

  3. Y. Chen, Z. Yan, Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity. Int. J. Mech. Sci. 173, 105473 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105473

    Article  Google Scholar 

  4. X. Zang, Y. Jiang, X. Wang, X. Wang, J. Ji, M. Xue, Highly sensitive pressure sensors based on conducting polymer-coated paper. Sens. Actuators B: Chem. 273, 1195–1201 (2018)

    Article  CAS  Google Scholar 

  5. S. Lu, S. Wang, G. Wang, J. Ma, X. Wang, H. Tang, X. Yang, Wearable graphene film strain sensors encapsulated with nylon fabric for human motion monitoring. Sens. Actuators A 295, 200–209 (2019)

    Article  CAS  Google Scholar 

  6. T.N. Ly, S. Park, Wearable strain sensor for human motion detection based on ligand-exchanged gold nanoparticles. J. Ind. Eng. Chem. 82, 122–129 (2020). https://doi.org/10.1016/j.jiec.2019.10.003

    Article  CAS  Google Scholar 

  7. S.H. Min, A. Asrulnizam, M. Atsunori, M. Mariatti, Properties of stretchable and flexible strain sensor based on silver/PDMS nanocomposites. Mater. Today: Proc. 17, 616–622 (2019)

    CAS  Google Scholar 

  8. J. Wang, W. Zhang, Q. Yin, B. Yin, H. Jia, Highly sensitive and flexible strain sensors based on natural rubber/graphene foam composites: the role of pore sizes of graphene foam. J. Mater. Sci.: Mater. Electron. 31(1), 125–133 (2020)

    CAS  Google Scholar 

  9. Y.R. Jeong, H. Park, S.W. Jin, S.Y. Hong, S.S. Lee, J.S. Ha, Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 25(27), 4228–4236 (2015)

    Article  CAS  Google Scholar 

  10. H. Chen, Y. Song, X. Cheng, H. Zhang, Self-powered electronic skin based on the triboelectric generator. Nano Energy 56, 252–268 (2019). https://doi.org/10.1016/j.nanoen.2018.11.061

    Article  CAS  Google Scholar 

  11. M. Shi, H. Wu, J. Zhang, M. Han, B. Meng, H. Zhang, Self-powered wireless smart patch for healthcare monitoring. Nano Energy 32, 479–487 (2017). https://doi.org/10.1016/j.nanoen.2017.01.008

    Article  CAS  Google Scholar 

  12. M.P. Wolf, G.B. Salieb-Beugelaar, P. Hunziker, PDMS with designer functionalities—properties, modifications strategies, and applications. Prog. Polym. Sci. 83, 97–134 (2018)

    Article  CAS  Google Scholar 

  13. Y. Lu, M.C. Biswas, Z. Guo, J.-W. Jeon, E.K. Wujcik, Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosens. Bioelectron. 123, 167–177 (2018)

    Article  Google Scholar 

  14. C. Jin, D. Liu, M. Li, Y. Wang, Application of highly stretchy PDMS-based sensing fibers for sensitive weavable strain sensors. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03038-x

    Article  Google Scholar 

  15. X.M. Zhang, X.L. Yang, K.Y. Wang, Conductive graphene/polydimethylsiloxane nanocomposites for flexible strain sensors. J. Mater. Sci.: Mater. Electron. 30(21), 19319–19324 (2019). https://doi.org/10.1007/s10854-019-02292-y

    Article  CAS  Google Scholar 

  16. X. Liu, B. Wei, F.I. Farha, W. Liu, W. Li, Y. Qiu, F. Xu, Densely Packed, Highly Strain Sensitive Carbon Nanotube Composites with Sufficient Polymer Penetration (Elsevier, Amsterdam, 2020)

    Book  Google Scholar 

  17. D. Xiang, X. Zhang, E. Harkin-Jones, W. Zhu, Z. Zhou, Y. Shen, Y. Li, C. Zhao, P. Wang, Synergistic effects of hybrid conductive nanofillers on the performance of 3D printed highly elastic strain sensors. Compos. A Appl. Sci. Manuf. 129, 105730 (2020). https://doi.org/10.1016/j.compositesa.2019.105730

    Article  CAS  Google Scholar 

  18. G. Shi, T. Liu, Z. Kopecki, A. Cowin, I. Lee, J.-H. Pai, S.E. Lowe, Y.L. Zhong, A multifunctional wearable device with a graphene/silver nanowire nanocomposite for highly sensitive strain sensing and drug delivery. C J. Carbon Res. 5(2), 17 (2019)

    Article  CAS  Google Scholar 

  19. Y.-J. Lee, S.-M. Lim, S.-M. Yi, J.-H. Lee, S.-G. Kang, G.-M. Choi, H.N. Han, J.-Y. Sun, I.-S. Choi, Y.-C. Joo, Auxetic elastomers: mechanically programmable meta-elastomers with an unusual Poisson’s ratio overcome the gauge limit of a capacitive type strain sensor. Extreme Mech. Lett. 31, 100516 (2019)

    Article  Google Scholar 

  20. Y. Ma, Y. Du, Y. Chen, C. Gu, T. Jiang, G. Wei, J. Zhou, Intrinsic Raman signal of polymer matrix induced quantitative multiphase SERS analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires. Chem. Eng. J. 381, 122710 (2020)

    Article  CAS  Google Scholar 

  21. K. Huang, H. Ning, N. Hu, F. Liu, X. Wu, S. Wang, Y. Liu, R. Zou, W. Yuan, L. Wu, Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process. Compos. Sci. Technol. (2020). https://doi.org/10.1016/j.compscitech.2020.108105

    Article  Google Scholar 

  22. S. Gong, D.T. Lai, Y. Wang, L.W. Yap, K.J. Si, Q. Shi, N.N. Jason, T. Sridhar, H. Uddin, W. Cheng, Tattoolike polyaniline microparticle-doped gold nanowire patches as highly durable wearable sensors. ACS Appl. Mater. Interfaces. 7(35), 19700–19708 (2015)

    Article  CAS  Google Scholar 

  23. J. Chen, Y. Zhu, W. Jiang, A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer. Compos. Sci. Technol. 186, 107938 (2020)

    Article  CAS  Google Scholar 

  24. Q. Meng, Z. Liu, S. Han, L. Xu, S. Araby, R. Cai, Y. Zhao, S. Lu, T. Liu, A facile approach to fabricate highly sensitive, flexible strain sensor based on elastomeric/graphene platelet composite film. J. Mater. Sci. 54(15), 10856–10870 (2019)

    Article  CAS  Google Scholar 

  25. Y. Xiong, Y. Zhu, X. Liu, P. Zhu, Y. Hu, R. Sun, C.-P. Wong, A flexible pressure sensor based on melamine foam capped by copper nanowires and reduced graphene oxide. Mater. Today Commun. 24, 100970 (2020)

    Article  CAS  Google Scholar 

  26. S. Gong, D.T. Lai, B. Su, K.J. Si, Z. Ma, L.W. Yap, P. Guo, W. Cheng, Highly stretchy black gold E-skin nanopatches as highly sensitive wearable biomedical sensors. Adv. Electron. Mater. 1(4), 1400063 (2015)

    Article  Google Scholar 

  27. T.-C. Lai, C. Fang, C. Liu, X.-R. Zhao, Y.-Q. Cao, D. Wu, A.-D. Li, Biomimetic strain sensors based on patterned polydimethylsiloxane and Ir nanoparticles decorated multi-walled carbon nanotubes. Sens. Actuators A: Phys. 289, 57–64 (2019)

    Article  CAS  Google Scholar 

  28. J. Lee, S. Kim, J. Lee, D. Yang, B.C. Park, S. Ryu, I. Park, A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6(20), 11932–11939 (2014)

    Article  CAS  Google Scholar 

  29. M. Su, F. Li, S. Chen, Z. Huang, M. Qin, W. Li, X. Zhang, Y. Song, Nanoparticle based curve arrays for multirecognition flexible electronics. Adv. Mater. 28(7), 1369–1374 (2016). https://doi.org/10.1002/adma.201504759

    Article  CAS  Google Scholar 

  30. Z. Wu, S. Yang, W. Wu, Shape control of inorganic nanoparticles from solution. Nanoscale 8(3), 1237–1259 (2016)

    Article  CAS  Google Scholar 

  31. S. Zhang, H. Deng, Q. Zhang, Q. Fu, Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties. ACS Appl. Mater. Interfaces 6(9), 6835–6844 (2014)

    Article  CAS  Google Scholar 

  32. M. Ren, Y. Zhou, Y. Wang, G. Zheng, K. Dai, C. Liu, C. Shen, Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem. Eng. J. 360, 762–777 (2019)

    Article  CAS  Google Scholar 

  33. S. Yoon, H.-K. Kim, Cost-effective stretchable Ag nanoparticles electrodes fabrication by screen printing for wearable strain sensors. Surf. Coat. Technol. 384, 125308 (2020)

    Article  CAS  Google Scholar 

  34. N. Wang, Z. Xu, P. Zhan, K. Dai, G. Zheng, C. Liu, C. Shen, A tunable strain sensor based on a carbon nanotubes/electrospun polyamide 6 conductive nanofibrous network embedded into poly (vinyl alcohol) with self-diagnosis capabilities. J. Mater. Chem. C 5(18), 4408–4418 (2017)

    Article  CAS  Google Scholar 

  35. S. Veeralingam, S. Priya, S. Badhulika, NiO nanofibers interspersed sponge based low cost, multifunctional platform for broadband UV protection, ultrasensitive strain and robust finger-tip skin inspired pressure sensor. Chem. Eng. J. 389, 124415 (2020)

    Article  CAS  Google Scholar 

  36. C. Xu, S. Hu, R. Zhang, H. Hu, C. Ying, F. Zhang, Q. Liu, X. Fu, Preparation and properties of flexible conductive polydimethylsiloxane composites containing hybrid fillers. Polym. Bull. 76(12), 6487–6501 (2019)

    Article  CAS  Google Scholar 

  37. L. Wang, Y. Chen, L. Lin, H. Wang, X. Huang, H. Xue, J. Gao, Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J. 362, 89–98 (2019)

    Article  CAS  Google Scholar 

  38. M. Zhang, C. Wang, H. Wang, M. Jian, X. Hao, Y. Zhang, Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Func. Mater. 27(2), 1604795 (2017)

    Article  Google Scholar 

  39. W. Li, Y. He, J. Xu, W.-Y. Wang, Z.-T. Zhu, H. Liu, Preparation of Ag NWs and Ag NWs@ PDMS stretchable sensors based on rapid polyol method and semi-dry process. J. Alloy Compd. 803, 332–340 (2019)

    Article  CAS  Google Scholar 

  40. S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6(4), 2345–2352 (2014)

    Article  CAS  Google Scholar 

  41. M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M.-B. Shim, S. Jeon, D.-Y. Chung, Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7(12), 803 (2012)

    Article  CAS  Google Scholar 

  42. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014)

    Article  CAS  Google Scholar 

  43. X. Gong, Y. Liu, Y. Wang, Z. Xie, Q. Dong, M. Dong, H. Liu, Q. Shao, N. Lu, V. Murugadoss, T. Ding, Z. Guo, Amino graphene oxide/dopamine modified aramid fibers: preparation, epoxy nanocomposites and property analysis. Polymer 168, 131–137 (2019). https://doi.org/10.1016/j.polymer.2019.02.021

    Article  CAS  Google Scholar 

  44. L. Lan, T. Yin, C. Jiang, X. Li, Y. Yao, Z. Wang, S. Qu, Z. Ye, J. Ping, Y. Ying, Highly conductive 1D–2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator. Nano Energy 62, 319–328 (2019)

    Article  CAS  Google Scholar 

  45. J.H. Choi, M.G. Shin, Y. Jung, D.H. Kim, J.S. Ko, Fabrication and performance evaluation of highly sensitive flexible strain sensors with aligned silver nanowires. Micromachines 11(2), 156 (2020)

    Article  Google Scholar 

  46. L. Liu, Q. Zhang, D. Zhao, A. Jian, J. Ji, Q. Duan, W. Zhang, S. Sang, Preparation and property research of strain sensor based on PDMS and silver nanomaterials. J. Sens. (2017). https://doi.org/10.1155/2017/7843052

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully express appreciation for the financial support from ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net) (Grant Number: 6050391) and Malaysian Ministry of Education (Fundamental Research Grant (MRSA) with Grant No. 6071284). The authors would also like to thank the Japan International Cooperation Agency and the School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariatti Jaafar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soe, H.M., Manaf, A.A., Matsuda, A. et al. Development and fabrication of highly flexible, stretchable, and sensitive strain sensor for long durability based on silver nanoparticles–polydimethylsiloxane composite. J Mater Sci: Mater Electron 31, 11897–11910 (2020). https://doi.org/10.1007/s10854-020-03744-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03744-6

Navigation