Skip to main content
Log in

Carbon nanotubes, orange dye, and graphene powder based multifunctional temperature, pressure, and displacement sensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work presents design, fabrication, and investigation of carbon nanotube (CNT), orange dye (OD), and graphene powder based multifunctional sensors. The output of the multifunctional sensors is observed as change in resistance and impedance values for an input change in temperature, pressure, and compressive displacement between the sensors electrodes. Using these sensors, temperature variation ranging from 30 to \(65^{\circ }\hbox {C}\), pressure 0 to 0.1 \(\hbox {kgf\,cm}^{-2}\) and longitudinal compressive displacements of 0 to 110 \(\upmu \hbox {m}\) are measured as change in resistance and impedance at two fixed frequencies, i.e., 100 Hz and 100 KHz. An increase in both resistance and impedance of the sensors is observed with increase in temperature. The temperature coefficients of the sensors having resistances \(\sim 470\)\(\Upomega\) and \(\sim 890\)\(\Upomega\) were \(1.0\%\,{}^{\circ }\hbox {C}^{-1}\) and \(1.9\%\,{}^{\circ }\hbox {C}^{-1}\), respectively, when evaluated for temperatures ranging from 30 to \(65^{\circ }\hbox {C}\). For applied pressure 0 \(\hbox {kgf\,cm}^{-2}\) to 0.1 \(\hbox {kgf\,cm}^{-2}\) and displacement 0 to 110 \(\upmu \hbox {m}\) the resistance of the multifunctional sensor decreases 1.3 to + 12.7 times (from 6730 \(\Upomega\) to 5210 \(\Upomega\) and 3410 \(\Upomega\) to 269 \(\Upomega\)) and 3.18 to 7.53 times (2235 \(\Upomega\) to 702 \(\Upomega\) and 6787 \(\Upomega\) to 901 \(\Upomega\)), respectively. With increased thickness of OD layer from 300 \(\upmu \hbox {m}\) to 570 \(\upmu \hbox {m}\), the output resistance and impedance of the sensors as a function of temperature also increased, exhibiting the improved sensitivity, however, at the expense of decreased pressure and displacement response of the sensors. Therefore, the thickness of OD film can be used as a design parameter for a desired sensitivity value to cater a particular application. The proposed multifunctional sensor can be a good candidate to measure temperature, pressure, and displacement of an industrial unit, such as flex bonding head because it offers light weight, simpler design, low maintenance, and eventually low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Terada and T. Nitta, Multi-functional sensor, U.S. Patent 4,378,691, 5 Apr 1983

  2. S. Yao, Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6(4), 2345–2352 (2014)

    Article  CAS  Google Scholar 

  3. P. Dario, D.E. De Rossi, Composite, multifunctional tactile sensor, U.S. Patent 4,555,953, 3 Dec 1985

  4. Z.-B. Zhao, H. Li, Q.-L. Lu, Y.-L. Li, Y. Jiang, Multifunctional sensors based on silicone hydrogel and their responses to solvents, pH and solution composition. Polym. Int. 66(4), 566–572 (2017)

    Article  CAS  Google Scholar 

  5. D. Liu, Q. Wang, X. Liu, R. Niu, Y. Zhang, J. Sun, A multifunctional sensor in ternary solution using canonical correlations for variable links assessment. Sensors 16(10), 1661 (2016)

    Article  Google Scholar 

  6. T.Y. Choi, B.-U. Hwang, B.-Y. Kim, T.Q. Trung, Y.H. Nam, D.-N. Kim, K. Eom, N.-E. Lee, Stretchable, transparent, and stretch-unresponsive capacitive touch sensor array with selectively patterned silver nanowires/reduced graphene oxide electrodes. ACS Appl. Mater. Interfaces 9(21), 18022–18030 (2017)

    Article  CAS  Google Scholar 

  7. B. Mahar, C. Laslau, R. Yip, Y. Sun, Development of carbon nanotube-based sensors—a review. IEEE Sens. J. 7(2), 266–284 (2007)

    Article  CAS  Google Scholar 

  8. I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: sensor properties—a review. Mod. Electron. Mater. 2(4), 95–105 (2016)

    Article  Google Scholar 

  9. C.S. Boland, U. Khan, C. Backes, A. ONeill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A.B. Dalton et al., Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano 8(9), 8819–8830 (2014)

    Article  CAS  Google Scholar 

  10. Y. Xu, Z. Guo, H. Chen, Y. Yuan, J. Lou, X. Lin, H. Gao, H. Chen, B. Yu, In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures. Appl. Phys. Lett. 99(13), 133109 (2011)

    Article  CAS  Google Scholar 

  11. Z. Ahmad, K.S. Karimov, F. Touati, Flexible impedance and capacitive tensile load sensor based on CNT composite. Chin. Phys. B 25(2), 028801 (2016)

    Article  CAS  Google Scholar 

  12. M.T.S. Chani, A.M. Asiri, K.S. Karimov, M. Bashir, S.B. Khan, M.M. Rahman, Carbon nanotubes-silicon nanocomposites based resistive temperature sensors. Int. J. Electrochem. Sci. 10, 3784–3791 (2015)

    CAS  Google Scholar 

  13. K.S. Karimov, N. Ahmed, M.M. Bashir, F. Aziz, M.Z. Rizvi, A. Khan, M. Tahir, N.A. Zaidi, M. Hafeez, A.S. Bhatti, Flexible resistive tensile load cells based on MWCNT/rubber composites. Pigment Resin Technol. (2015). https://doi.org/10.1108/PRT-06-2014-0047

    Article  Google Scholar 

  14. A. Khan, K.S. Karimov, Z. Ahmad, K. Sulaiman, M. Shah, S. Moiz, Pressure sensitive organic sensor based on CNT-VO2(3fl) composite. Sains Malays. 43(6), 903–908 (2014)

    CAS  Google Scholar 

  15. M.T.S. Chani, K.S. Karimov, A.M. Asiri, N. Ahmed, M.M. Bashir, S.B. Khan, M.A. Rub, N. Azum, Temperature gradient measurements by using thermoelectric effect in CNTs-silicone adhesive composite. PLoS ONE 9(4), 1–6 (2014)

    Article  CAS  Google Scholar 

  16. K.S. Karimov, u Abid, M. Saleem, K.M. Akhmedov, M.M. Bashir, U. Shafique, M.M. Ali, Temperature gradient sensor based on CNT composite. Physica B 446, 39–42 (2014)

    Article  CAS  Google Scholar 

  17. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys. Chem. Chem. Phys. 13(39), 17615–17624 (2011)

    Article  CAS  Google Scholar 

  18. M. Martin-Gallego, M. Bernal, M. Hernandez, R. Verdejo, M.A. López-Manchado, Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. Eur. Polymer J. 49(6), 1347–1353 (2013)

    Article  CAS  Google Scholar 

  19. J. Du, L. Zhao, Y. Zeng, L. Zhang, F. Li, P. Liu, C. Liu, Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49(4), 1094–1100 (2011)

    Article  CAS  Google Scholar 

  20. Z.M. Markovic, L.M. Harhaji-Trajkovic, B.M. Todorovic-Markovic, D.P. Kepić, K.M. Arsikin, S.P. Jovanović, A.C. Pantovic, M.D. Dramićanin, V.S. Trajkovic, In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 32(4), 1121–1129 (2011)

    Article  CAS  Google Scholar 

  21. A.B. Oskouyi, U. Sundararaj, P. Mertiny, Effect of temperature on electrical resistivity of carbon nanotubes and graphene nanoplatelets nanocomposites. J. Nanotechnol. Eng. Med. (2014). https://doi.org/10.1115/1.4030018

    Article  Google Scholar 

  22. K.S. Karimov, M.H. Sayyad, M. Ali, M.N. Khan, S.A. Moiz, K.B. Khan, H. Farah, Z.M. Karieva, Electrochemical properties of Zn/orange dye aqueous solution/carbon cell. J. Power Sources 155(2), 475–477 (2006)

    Article  CAS  Google Scholar 

  23. K.S. Karimov, M. Ahmed, S. Moiz, P. Babadzhanov, R. Marupov, M. Turaeva, Electrical properties of organic semiconductor orange nitrogen dye thin films deposited from solution at high gravity. Eurasian Chem. Technol. J. 5(2), 109–113 (2003)

    Article  CAS  Google Scholar 

  24. K.S. Karimov, T. Qasuria, The use of displacement sensitive organic field effect transistor for telemetry system applications. Measurement 45(1), 41–46 (2012)

    Article  Google Scholar 

  25. H. Pang, Y.-C. Zhang, T. Chen, B.-Q. Zeng, Z.-M. Li, Tunable positive temperature coefficient of resistivity in an electrically conducting polymer/graphene composite. Appl. Phys. Lett. 96(25), 251907 (2010)

    Article  CAS  Google Scholar 

  26. K.S. Karimov, H. Senin, I. Qazi, M. Sadrai, Organic semiconductors: conduction mechanisms and some applications, in AIP Conference Proceedings, vol. 1017, pp. 25–34. American Institute of Physics (2008)

  27. D. Fathi, A review of electronic band structure of graphene and carbon nanotubes using tight binding. J. Nanotechnol. 2011, 1–6 (2011)

    Article  CAS  Google Scholar 

  28. M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, New York, 2014)

    Google Scholar 

  29. A. Suzuki, M. Tanabe, S. Fujita, Electronic band structure of graphene based on the rectangular 4-atom unit cell. J. Mod. Phys. 8(4), 607–621 (2017)

    Article  CAS  Google Scholar 

  30. C.P. Poole Jr., F.J. Owens, Introduction to Nanotechnology (Wiley, New York, 2003)

    Google Scholar 

  31. A. Naeemi, J.D. Meindl, Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gigascale integrated systems. IEEE Trans. Electron. Dev. 54(1), 26–37 (2006)

    Article  CAS  Google Scholar 

  32. B. Wei, R. Vajtai, P. Ajayan, Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79(8), 1172–1174 (2001)

    Article  CAS  Google Scholar 

  33. P.G. Collins, M. Hersam, M. Arnold, R. Martel, P. Avouris, Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 86(14), 3128–3131 (2001)

    Article  CAS  Google Scholar 

  34. S. Berber, Y.-K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613–4616 (2000)

    Article  CAS  Google Scholar 

  35. A. Raychowdhury, K. Roy, Modeling of metallic carbon-nanotube interconnects for circuit simulations and a comparison with Cu interconnects for scaled technologies. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(1), 58–65 (2005)

    Article  Google Scholar 

  36. K.S. Novoselov, A. Geim, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  CAS  Google Scholar 

  37. S. Fujita, A. Suzuki, Electrical Conduction in Graphene and Nanotubes (Wiley Online Library, 2013)

  38. K.S. Karimov, K. Sulaiman, Z. Ahmad, K.M. Akhmedov, A. Mateen, Novel pressure and displacement sensors based on carbon nanotubes. Chin. Phys. B 24(1), 018801 (2015)

    Article  CAS  Google Scholar 

  39. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)

    Article  CAS  Google Scholar 

  40. S.D. Sarma, S. Adam, E. Hwang, E. Rossi, Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83(2), 407 (2011)

    Article  CAS  Google Scholar 

  41. M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  42. K.S. Karimov, Electrophysical properties of low-dimensional organic materials at deformation. PhD thesis, Department of Heat Physics, Academy of Sciences, Tashkent, Uzbekistan (1993)

  43. E. Eidelman, A.Y. Vul, The strong thermoelectric effect in nanocarbon generated by the ballistic phonon drag of electrons. J. Phys. Condens. Matter 19(26), 266210 (2007)

    Article  CAS  Google Scholar 

  44. H. Bässler, A. Köhler, Charge transport in organic semiconductors. In: Unimolecular and Supramolecular Electronics I (Springer, Berlin, 2011), pp. 1–65

    Google Scholar 

  45. M.T.S. Chani, K.S. Karimov, A.M. Asiri, Carbon nanotubes and graphene powder based multifunctional pressure, displacement and gradient of temperature sensors. Semiconductors 54(1), 85–90 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their valuable suggestions to improve the manuscript. We would also like to acknowledge the support of CUST, GIK Institute, and Center for Innovative Development of Science and New Technologies of Academy of Sciences, Rudaki Ave. 33, Dushanbe, Tajikistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Shafique.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafique, S., Karimov, K.S., Abid, M. et al. Carbon nanotubes, orange dye, and graphene powder based multifunctional temperature, pressure, and displacement sensors. J Mater Sci: Mater Electron 31, 8893–8899 (2020). https://doi.org/10.1007/s10854-020-03424-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03424-5

Navigation