Skip to main content
Log in

Synthesis of MnSb2O6 powders through a simple low-temperature method and their test as a gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a simple and economical chemical method was used to synthesize MnSb2O6 nanoparticles for their potential application as a gas sensor. The nanoparticles of the oxide were analyzed by powder X-ray diffraction, finding the crystalline phase at 600 °C. The crystallized oxide presented a hexagonal crystalline structure with spatial group P321. The microstructure of the material was analyzed by field-emission scanning electron microscopy, finding surface morphologies such as micro-plates, microspheres (diameter ~ 0.69 μm), and other particles without apparent shape. The average size of the nanoparticles was estimated at ~ 32.0 nm, according to images obtained by transmission electron microscopy (TEM). Oxidation states of the atomic elements forming the MnSb2O6 nanoparticles were found by X-ray photoelectron spectroscopy measurements. In the case of Mn, two oxidation states Mn2+ and Mn3+ corresponding to the Mn 2p3/2 state were observed at 641.26 and 642.7 eV, respectively. For Sb, the Sb3+ oxidation state, associated with the Sb 3d3/2 state, was located at 539.82 eV. The peak assigned to O at 530.82 eV overlaps the Sb 3d5/2. The secondary ion mass spectrometry depth profiling showed a good distribution of the atomic elements in the nanoparticles, without additional elements or impurities. The optical properties were also studied by photoacoustic spectroscopy, revealing a direct transition of the MnSb2O6 nanoparticles with a band gap energy of 1.78 eV. The gas detection tests were performed in C3H8 and CO atmospheres at different concentrations and operating temperatures. The oxide showed an interesting behavior as the concentrations of the testing gases and the operating temperature increased. The high response presented by the MnSb2O6 suggests that this material can be used as a gas sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.N.R. Rao, A.K. Cheetham, J. Mater. Chem. 11, 2887–2894 (2001)

    CAS  Google Scholar 

  2. K. Savolainen, H. Aleniusa, H. Norppaa, L. Pylkkänena, T. Tuomi, G. Kasper, Toxicology 269, 92–104 (2010)

    CAS  Google Scholar 

  3. H.K. Chitte, N.V. Bhat, N.S. Karmakar, D.C. Kothari, G.N. Shinde, J. Nano Sci. Eng. 2, 19–24 (2012)

    CAS  Google Scholar 

  4. S.V.N.T. Kuchibhatla, A.S. Karakoti, D. Bera, S. Seal, Prog. Mater. Sci. 52, 699–913 (2007)

    CAS  Google Scholar 

  5. C. Wu, P. Yin, X. Zhu, C. OuYang, Y. Xie, J. Phys. Chem. B 110, 17806–17812 (2006)

    CAS  Google Scholar 

  6. R. Mahdavi, S.S.A. Talesh, Adv. Powder Technol. 28, 1418–1425 (2017)

    CAS  Google Scholar 

  7. S. Noha, S.H. Moona, T. Shina, Y. Lima, J. Cheon, Nano Today 13, 61–76 (2017)

    Google Scholar 

  8. G. Otnes, M.T. Borgström, Nano Today 12, 31–45 (2017)

    CAS  Google Scholar 

  9. Y. Chen, S. Zhou, L. Li, J. Zhu, Nano Today 12, 98–115 (2017)

    CAS  Google Scholar 

  10. J. Cao, C. Qin, Y. Wang, B. Zhang, Y. Gong, H. Zhang, G. Sun, Z. Zhang, Nanomaterials 7, 98 (2017). https://doi.org/10.3390/nano7050098

    Article  CAS  Google Scholar 

  11. J. Zhang, M. Chaker, D. Ma, J. Colloid Interfaces Sci. 489, 138–149 (2017)

    CAS  Google Scholar 

  12. S. Saif, A. Tahir, Y. Chen, Nanomaterials 6, 209 (2016). https://doi.org/10.3390/nano6110209

    Article  CAS  Google Scholar 

  13. H. Guillen-Bonilla, V.M. Rodríguez-Betancourtt, J.T. Guillén-Bonilla et al., J. Nanomater. (2015). https://doi.org/10.1155/2015/979543

    Article  Google Scholar 

  14. F. Wang, Z. Wang, J. Zhu, H. Yang, X. Chen, C. Yang, J. Mater. Sci. 52, 3556–3565 (2017)

    CAS  Google Scholar 

  15. B. An, J. Zhang, K. Cheng, P. Ji, C. Wang, W. Lin, J. Am. Chem. Soc. 139, 3834–3840 (2017)

    CAS  Google Scholar 

  16. S. Lee, W.M. Kriven, J. Am. Ceram. Soc. 81(10), 2605–2612 (1998)

    CAS  Google Scholar 

  17. Z. Issaabadi, M. Nasrollahzadeh, S.M. Sajadi, J. Clean. Prod. 142, 3584–3591 (2017)

    CAS  Google Scholar 

  18. A. Barhoum, G.V. Assche, H. Rahier, M. Fleisch, S. Bals, M. Delplancked, F. Leroux, D. Bahnemann, Mater. Des. 119, 270–276 (2017)

    CAS  Google Scholar 

  19. A.S. Larcher, L. Prakash, M. Laffont, J.C. Womes, J. Jumas, M.S. Olivier-Fourcade, M. Tarascon, J. Electrochem. Soc. 153, A1778–A1787 (2006)

    CAS  Google Scholar 

  20. P.I. Saldanha, V. Lesnyak, L. Manna, Nano Today 12, 46–63 (2017)

    CAS  Google Scholar 

  21. A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, M. Flores-Martínez et al., Sensors 14(9), 15802–15814 (2014)

    Google Scholar 

  22. Y. Qu, H. Wang, H. Chen, M. Han, Z. Lin, Sens. Actuator B 228, 595–604 (2016)

    CAS  Google Scholar 

  23. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10(3), 2088–2106 (2010)

    CAS  Google Scholar 

  24. H. Liu, Y. Guo, R. Xie, T. Peng, G. Ma, Y. Tang, Sens. Actuator B 246, 164–168 (2017)

    CAS  Google Scholar 

  25. E. Cao, H. Wang, X. Wang, Y. Yang, W. Hao, L. Sun, Y. Zhang, Sens. Actuator B 251, 885–893 (2017)

    CAS  Google Scholar 

  26. S. Ghosh, U. Chowdhury, S. Roy, R. Bandyopadhyay, Ceram. Int. 42, 14944–14948 (2016)

    CAS  Google Scholar 

  27. T. Liu, J. Liu, Q. Liu, L. Rumin, H. Zhang, X. Jing, J. Wang, Sens. Actuator B 250, 111–120 (2017)

    CAS  Google Scholar 

  28. A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, J.T. Guillén-Bonilla, A. Sánchez-Martínez, L. Gildo-Ortiz, J. Santoyo-Salazar, J.P. Morán-Lázaro, H. Guillén-Bonilla, O. Blanco-Alonso, Ceram. Int. 43, 13635–13644 (2017)

    Google Scholar 

  29. A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, H. Guillén-Bonilla, L. Gildo-Ortiz, O. Blanco-Alonso, N.E. Franco-Rodríguez, J.R. Gómez, A. Casillas-Zamora, J.T. Guillen-Bonilla, J. Mater. Sci.: Mater. Electron. 29, 15741–15753 (2018)

    Google Scholar 

  30. S.V. Trukhanov, A.V. Trukhanov, S.S. Salem, E.L. Trukhanov, L.V. Panina, V.G. Kostishyn, M.A. Darwish, A.V. Trukhanov, T.I. Zubar, D.I. Tishkevich, V. Sivakov, D.A. Vinnik, S.A. Gudkova, C. Singh, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2019.12.003

    Article  Google Scholar 

  31. V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanov, A.V. Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, M.G. Vakhitov, P. Thakur, A. Thakur, Y. Yang, J. Magn. Magn. Mater. 466, 393–405 (2018)

    CAS  Google Scholar 

  32. A.V. Trukhanov, M.A. Darwish, L.V. Panina, A.T. Morchenko, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, E.L. Trukhanov, K.A. Astapovich, A.L. Kozlovskiy, M. Zdorovets, S.V. Trukhanov, J. Alloys Compd. 791, 522–529 (2019)

    CAS  Google Scholar 

  33. A.V. Trukhanov, M.A. Almessiere, A. Bayka, S.V. Trukhanov, Y. Slimani, D.A. Vinnik, V.E. Zhivulin, A. Yu Starikov, D.S. Klygach, M.G. Vakhitov, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanov, M. Zdorovet, J. Alloys Compd. 788, 1193-122 (2019)

    Google Scholar 

  34. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kocherniskiy, JETP Lett. 103, 100–105 (2016)

    CAS  Google Scholar 

  35. A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, M. Salem, Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin. Phys. B 25, 016102–016106 (2016)

    Google Scholar 

  36. M.A. Almessiere, Y. Slimani, H. Güngüne, A. Baykal, S.V. Trukhanov, A.V. Trukhanov, Nanomaterials 9, 18–24 (2019)

    Google Scholar 

  37. M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanov, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, A. Baykal, Nanomaterials 9, 202–213 (2019)

    CAS  Google Scholar 

  38. V.B. Nalbandyan, E.A. Zvereva, AYu. Nikulin, I.L. Shukaev, M. Whangbo, H. Koo, M. Abdel-Hafiez, X. Chen, C. Koo, A.N. Vasiliev, R. Klingeler, Inorg. Chem. 54, 1705–1711 (2015)

    CAS  Google Scholar 

  39. R.D. Johnson, K. Cao, L.C. Chapon, F. Fabrizi, N. Perks, P. Manuel, J.J. Yang, Y.S. Oh, S.-W. Cheong, P.G. Radaelli, Phys. Rev. Lett. 111, 017202 (2013)

    CAS  Google Scholar 

  40. H. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, J.T. Guillen-Bonilla, L. Gildo-Ortiz, A. Guillen-Bonilla, Y.L. Casallas-Moreno, O. Blanco-Alonso, J. Reyes-Gómez, Sensors 18, 2299 (2018)

    Google Scholar 

  41. H.G. Scott, J. Solid State Chem. 66, 171–180 (1987)

    CAS  Google Scholar 

  42. J.N. Reimers, J.E. Greedan, J. Solid State Chem. 79, 263–276 (1989)

    CAS  Google Scholar 

  43. J. Singh, N. Bhardwaj, S. Uma, Bull. Mater. Sci. 36(2), 287–291 (2013)

    CAS  Google Scholar 

  44. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiram, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Sens. Actuators B 160, 580–591 (2011)

    CAS  Google Scholar 

  45. M. Morales-Luna, S.A. Tomás, M.A. Arvizu, M. Pérez-González, E. Campos-González, J. Alloys Compd. 722, 938–945 (2017)

    CAS  Google Scholar 

  46. J. Werner, C. Koo, R. Klingeler, Phys. Rev. B 94, 104408 (2016)

    Google Scholar 

  47. M. Kinoshita, S. Seki, T.J. Sato, Y. Nambu, T. Hong, M. Matsuda, H.B. Cao, S. Ishiwata, Y. Tokura, Phys. Rev. Lett. 117, 047201 (2016)

    CAS  Google Scholar 

  48. L. Rambert, P. Bordet, A. Sulpice, P. Strobel, J. Solid State Chem. 177, 268–273 (2004)

    CAS  Google Scholar 

  49. J.P. Allen, J.J. Carey, A. Walsh, D.O. Scanlon, G.W. Watson, J. Phys. Chem. C 117, 14759–14769 (2013)

    CAS  Google Scholar 

  50. A. Jamal, M. Muzibur-Rahman, S. Bahadar-Khan, M. Margub-Abdullah, M. Faisal, A. Muhammad-Asiri, A. Aslam, P. Khan, K. Akhtar, J. Chem. Soc. Pak. 35, 570–576 (2013)

    Google Scholar 

  51. I.O. Troyanchuk, S.V. Trukhanov, H. Szymczak, K. Baerner, J. Phys. Condens. Matter 12, L155–L158 (2000)

    CAS  Google Scholar 

  52. S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khomchenko, N.V. Pushkarev, I.O. Tyoyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak, Eur. Phys. J. B 42, 51–61 (2004)

    CAS  Google Scholar 

  53. S.V. Trukhanov, J. Mater. Chem. 13, 347–352 (2003)

    CAS  Google Scholar 

  54. V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, J. Appl. Phys. 104, 093909-9 (2008)

    Google Scholar 

  55. X. Wang, Y. Li, Solution-based synthetic strategies for 1-D nanostructures. Inorg. Chem. 45, 7522–7534 (2006)

    CAS  Google Scholar 

  56. M. Pérez-González, S.A. Tomás, J. Santoyo-Salazar, M. Morales-Luna, Ceram. Int. 43, 8831–8838 (2017)

    Google Scholar 

  57. S.S. Ardizzone, C.L. Bianchi, D. Tirelli, Surf. A 134, 305–312 (1998)

    CAS  Google Scholar 

  58. J. Gurgul, M.T. Rinke, I. Schellenberg, R. Pöttgen, Solid State Sci. 17, 122–127 (2013)

    CAS  Google Scholar 

  59. Y. Zhang-Steenwinkel, J. Beckers, A. Bliek, Appl. Catal. A 235, 79–92 (2002)

    CAS  Google Scholar 

  60. M.A. Langell, C.W. Hutchings, G.A. Carson, M.H. Nassir, J. Vac. Sci. Technol. A 14(3), 1656–1661 (1996)

    CAS  Google Scholar 

  61. M. Pérez-González, S.A. Tomás, J. Santoyo-Salazar, S. Gallardo-Hernández, M.M. Tellez-Cruz, O. Solorza-Feria, J. Alloys Compd. 779, 908–917 (2019)

    Google Scholar 

  62. A.K. Ghosh, B.K. Sarkar, B.K. Chaudhuri, Solid State Commun. 113, 41–45 (2000)

    Google Scholar 

  63. G. Xiao-Yong, F. Hong-Liang, M. Jiao-Min, Z. Zeng-Yuan, Chin. Phys. B 19(9), 090701 (2010)

    Google Scholar 

  64. S.K. Lim, S. Hui Hong, S.-H. Hwang, W.M. Choi, S. Kim, H. Park, M.G. Jeong, J. Mater. Sci. Technol. 31, 639–644 (2015)

    CAS  Google Scholar 

  65. D. Koziej, N. Bârsan, V. Hoffmann, J. Szuber, U. Weimar, Sens. Actuators B 108, 75–83 (2005)

    CAS  Google Scholar 

  66. H. Gómez-Pozos, T.V.K. Karthik, M. de la L. Olvera, A. García-Barrientos, O. Pérez-Cortés, J. Vega-Pérez, A. Maldonado, R. Pérez-Hernández, V. Rodríguez-Lugo, J. Phys. Chem. Solid 106, 16–28 (2017)

    Google Scholar 

  67. L. Gildo-Ortiz, H. Guillén-Bonilla, J. Reyes-Gómez, V.M. Rodríguez-Betancourtt, M.L. Olvera-Amador, S.I. Eguía-Eguía, A. Guillén-Bonilla, J. Santoyo-Salazar, J. Nanomater. (2017). https://doi.org/10.1155/2017/8174987

    Article  Google Scholar 

  68. F. Qiang, S. Dai, L. Zhao, L. Gong, G. Zhang, J. Jiang, L. Tang, Sens. Actuators B 285, 254–263 (2019)

    CAS  Google Scholar 

  69. L. Guan, L. Zhao, Y.-J. Wan, Nanoscale 10, 14788–14811 (2018)

    CAS  Google Scholar 

  70. L. Gildo-Ortiz, J. Reyes-Gómez, J.M. Flores-Álvarez, H. Guillén-Bonilla, M. de la L. Olvera, V.M. Rodríguez Betancourtt, Y. Verde-Gómez, A. Guillén-Cervantes, J. Santoyo-Salazar, Ceram. Int. 42, 18821–18827 (2016)

    CAS  Google Scholar 

  71. L. Gildo-Ortiz, H. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, O. Blanco-Alonso, A. Guillén-Bonilla, J. Santoyo-Salazar, I.C. Romero-Ibarra, J. Reyes-Gómez, Ceram. Int. 44, 15402–15410 (2018)

    CAS  Google Scholar 

  72. J.P. Morán-Lázaro, E.S. Guillen-López, F. López-Uria, E. Muñoz-Sandoval, O. Blanco-Alonso, H. Guillén-Bonilla, A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, M. Sanchez-Tizapa, M.L. Olvera-Amador, Sensors 18, 701 (2018)

    Google Scholar 

  73. H. Gómez-Pozos, J.L. González-Vidal, G. Alberto-Torres, M.L. Olvera, L. Castañeda, Sensors 14, 403–415 (2014)

    Google Scholar 

  74. C.R. Michel, H. Guillén-Bonilla, A.H. Martínez-Preciado, J.P. Morán-Lázaro, Sens. Actuators B 143, 278–285 (2009)

    Google Scholar 

  75. T. Lin, X. Lv, Z. Hu, A. Xu, C. Feng, Sensors 19, 23 (2019)

    Google Scholar 

Download references

Acknowledgements

Antonio Casillas thanks Mexico’s National Council of Science and Technology (CONACyT) for the scholarship. He also expresses his gratitude to the Guadalajara University for the support granted. The authors thank Mexico’s National Council of Science and Technology (CONACyT) and the University of Guadalajara for the support granted. Likewise, we thank M. Guerrero, A. B. Soto, Sergio Oliva-León, and Miguel-Ángel Luna-Arias for their technical assistance. The X-ray photoelectron spectroscopy work was supported by CONACYT in through projects No. 168505 and 205733. This investigation was carried out following the line of research “Nanostructured Semiconductor Oxides” of the academic group UDG-CA-895 “Nanostructured Semiconductors” of CUCEI, University of Guadalajara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Guillén-Bonilla.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casillas-Zamora, A., Guillén-Bonilla, J.T., Guillén-Bonilla, A. et al. Synthesis of MnSb2O6 powders through a simple low-temperature method and their test as a gas sensor. J Mater Sci: Mater Electron 31, 7359–7372 (2020). https://doi.org/10.1007/s10854-019-02700-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02700-3

Navigation