Skip to main content
Log in

Electromagnetic wave absorption properties of carbon black/cement-based composites filled with porous glass pellets

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cement-based composites filled with carbon black (CB) and porous glass pellets(GPs) were prepared, and the electromagnetic wave absorption properties (EMAPs) were investigated with the arch method in 1.7–18 GHz. Results indicate that introducing of GPs into cement-based materials enhances the EMAPs significantly. The larger the particle size is, the lower the impedance of the composite is. The number of absorption peaks increases, the reflectivity curve becomes flat, and the EMAPs increase first and then decrease. The GPs with the size of 0.25–1.0 mm contribute most to the EMAPs with the same content. Graded GPs produce high mechanical strength, and the synergistic effect of particles with different sizes on the enhancement of EMAPs is not obvious. The optimal content of GPs and composite thickness are 50 vol% and 20–30 mm, respectively. The composite reaches the lowest average reflectivity at − 9.67 dB, and the bandwidth below − 10 dB is 7.47 GHz when CB is 1.5 g/L, the thickness is 20 mm and the filling ratio is 50 vol%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Hakgudener, Proced. Eng. 118, 109 (2015)

    Article  Google Scholar 

  2. R.N. Kostoff, C.G.Y. Lau, Technol. Forecast. Soc. Chang. 80(7), 1331 (2013)

    Article  Google Scholar 

  3. A. Wdowiak, P.A. Mazurek, A. Wdowiak et al., Ann. Agric. Environ. Med. 24(1), 13 (2017)

    Article  CAS  Google Scholar 

  4. L. Xing, P. Shunkang, C. Lichun et al., Rare Metal Mater. Eng. 44(9), 2091 (2015)

    Article  Google Scholar 

  5. S. Xie, Z. Ji, Y. Yang et al., Compos. Struct. 180, 513 (2017)

    Article  Google Scholar 

  6. J. Mao, L. Sun, J. Lv et al., Ceram. Int. 42(14), 16132 (2016)

    Article  CAS  Google Scholar 

  7. T. Khalid, L. Albasha, N. Qaddoumi et al., IEEE Trans. Antenna Propag. 65(5), 2428 (2017)

    Article  Google Scholar 

  8. H. Du, X. Lin, H. Zheng et al., J. Alloys. Compd. 663, 848 (2016)

    Article  CAS  Google Scholar 

  9. D. Micheli, A. Vricella, R. Pastore et al., Constr. Build. Mater. 131, 267 (2017)

    Article  CAS  Google Scholar 

  10. H. Guan, S. Liu, Y. Duan et al., Cement Concrete Comp. 29(1), 49 (2007)

    Article  CAS  Google Scholar 

  11. H. Guan, S. Liu, Y. Duan, J. Mater. Eng. Perform. 16(1), 68 (2007)

    Article  CAS  Google Scholar 

  12. S. Xie, Z. Ji, Y. Yang et al., Compos. B 106, 10 (2016)

    Article  CAS  Google Scholar 

  13. X. Lv, Y. Duan, G. Chen, Constr. Build. Mater. 162, 280 (2018)

    Article  CAS  Google Scholar 

  14. J. Wang, H. Qiu, X. Zhong et al., J. Mater. Sci.: Mater. Electron. 28(8), 5852 (2017)

    CAS  Google Scholar 

  15. P. Palmero, A. Formia, P. Antonaci et al., Ceram. Int. 41(10), 12967 (2015)

    Article  CAS  Google Scholar 

  16. H. Baghi, F. Menkulasi, C. Montes et al., Eng. Struct. 168, 559 (2018)

    Article  Google Scholar 

  17. S.G. Sanfelix, I. Santacruz, A.M. Szczotok et al., Constr. Build. Mater. 202, 353 (2019)

    Article  CAS  Google Scholar 

  18. W. Limbut, Biosens. Bioelectron. 19(8), 813 (2004)

    Article  CAS  Google Scholar 

  19. M.A. Kumar, M.S. Thakur, A. Senthuran et al., World J. Microb. Biot. 17(1), 23 (2001)

    Article  CAS  Google Scholar 

  20. M. Piralaee, A. Asgari, V. Siahpoush, Phys. Lett. A 381(5), 489 (2017)

    Article  CAS  Google Scholar 

  21. F. Meng, H. Wang, F. Huang et al., Compos. B Eng. 137, 260 (2018)

    Article  CAS  Google Scholar 

  22. Y. Wan, J. Xiao, C. Li et al., J. Magn. Magn. Mater. 399, 252 (2016)

    Article  CAS  Google Scholar 

  23. L. Yin, J. Doyhamboure-Fouquet, X. Tian et al., Compos. B Eng. 132, 178 (2018)

    Article  CAS  Google Scholar 

  24. T. Bian, X. Gao, S. Yu et al., Optik 136, 215 (2017)

    Article  CAS  Google Scholar 

  25. G. Videen, P. Chýlek, Opt. Commun. 158(1), 1 (1998)

    Article  CAS  Google Scholar 

  26. J. Li, L. Chang, P. Wu, Opt. Commun. 355, 148 (2015)

    Article  CAS  Google Scholar 

  27. O. Xu, Z. Wang, R. Wang, Constr. Build. Mater. 135, 632 (2017)

    Article  CAS  Google Scholar 

  28. Y. He, X. Zhang, Y. Zhang et al., Constr. Build. Mater. 72, 270 (2014)

    Article  Google Scholar 

  29. L. Guoqiang, D. Xuejun, J. Chongqing Jiaotong I. 14(02), 38 (1995). (In Chinese)

    Google Scholar 

  30. S.G. Hu, K. Tian, Q.J. Ding, 8th International symposium on antennas, Propagation & EM Theory (IS-APE—2008) (2008)

  31. Y. Duan, W. Liu, L. Song et al., Mater. Res. Bull. 88, 41 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Chinese National Key Research and Development Project (2016YFC0700903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijiang Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Ji, Z., Xie, S. et al. Electromagnetic wave absorption properties of carbon black/cement-based composites filled with porous glass pellets. J Mater Sci: Mater Electron 30, 12416–12425 (2019). https://doi.org/10.1007/s10854-019-01600-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01600-w

Navigation