Skip to main content
Log in

Preparation of Fe3O4/TiO2 magnetic photocatalyst for photocatalytic degradation of phenol

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, Fe3O4 magnetic nanoparticles were prepared from FeCl2/FeCl3 and NaOH solution by chemical co-precipitation method in an impinging stream-rotating packed bed. Then, Fe3O4/TiO2 photocatalyst was prepared for photocatalytic degradation of phenol by sol–gel method using butyl titanate and Fe3O4 magnetic nanoparticles. The surface morphology, structure and crystalline phase of Fe3O4/TiO2 were characterized by high resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, dynamic light scattering and ultraviolet–visible spectroscopy. A 100 mg L−1 phenol aqueous solution was used as the pollutant. The effects of calcination temperature, the dosage of butyl titanate, the dosage of catalyst and solution pH value on the photocatalytic activity of Fe3O4/TiO2 were investigated. The results showed that Fe3O4/TiO2 photocatalyst could be easily recovered from the solution by permanent magnet. The photocatalytic activity reached a maximum under the following conditions: calcination temperature, 400 °C; butyl titanate dosage, 10 mL; catalyst dosage, 3 g L−1; and solution pH value, 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Connor, Managing Water Under Uncertainty and Risk: The United Nations World Water Development Report 4 (UNESCO, Paris, 2012)

    Google Scholar 

  2. E. Commission, Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. L 330, 32–54 (1998)

    Google Scholar 

  3. T. Al-Khalid, M.H. El-Naas, Aerobic biodegradation of phenols: a comprehensive review. Crit. Rev. Environ. Sci. Technol. 42, 1631–1690 (2012)

    Article  CAS  Google Scholar 

  4. H. Delasa, B.S. Rosales, et al. Photocatalytic Technologies (Science Press, Ottawa, 2010)

    Google Scholar 

  5. D. Trylc, A. Fujishima, D. Tyrk et al., TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008)

    Article  Google Scholar 

  6. R.L. Pozzo, M.A. Baltanás, A.E. Cassano, Supported titanium oxide as photocatalyst in water decontamination: state of the art. Catal. Today 39, 219–231 (1997)

    Article  CAS  Google Scholar 

  7. A. Fallah-Shojaei, K. Tabatabaeian, F. Shirini et al., Multi-walled carbon nanotube supported Fe O NPs: an efficient and reusable catalyst for the one-pot synthesis of 4-pyran derivatives. RSC Adv. 4, 9509–9516 (2014)

    Article  CAS  Google Scholar 

  8. S. Khashan, S. Dagher, N. Tit, A. Alazzam, I. Obaidat, Novel method for synthesis of Fe3O4@TiO2 core/shell nanoparticles. Surf. Coat. Technol. 322, 92–98 (2017)

    Article  CAS  Google Scholar 

  9. H. Zhang, X. He, W. Zhao et al., Preparation of Fe3O4/TiO2 magnetic mesoporous composites for photocatalytic degradation of organic pollutants. Water Sci. Technol. A 75, 1523 (2017)

    Article  CAS  Google Scholar 

  10. S. Salamat, H. Younesi, N. Bahramifar, Synthesis of magnetic core–shell Fe3O4@TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater. Rsc Adv. 7, 19391–19405 (2017)

    Article  CAS  Google Scholar 

  11. R. Rajendran, R. Muralidharan, R.S. Gopalakrishnan et al., Controllable synthesis of single-crystalline Fe3O4 nanorice by a one-pot, surfactant-assisted hydrothermal method and its properties. Eur. J. Inorg. Chem. 35, 5384–5389 (2011)

    Article  Google Scholar 

  12. Y.B. Zhao, Z.Y. Qiu, J.Y. Huang, Preparation and analysis of Fe3O4 magnetic nanoparticles used as targeted-drug carriers. Chin. J. Chem. Eng. 16, 451–455 (2008)

    Article  CAS  Google Scholar 

  13. X. Wu, J. Tang, Y. Zhang et al., Low temperature synthesis of Fe3O4, nanocrystals by hydrothermal decomposition of a metallorganic molecular precursor. Mater. Sci. Eng. B 157, 81–86 (2009)

    Article  CAS  Google Scholar 

  14. H. Deng, X. Li, Q. Peng et al., Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. 117, 2782 (2005)

    Article  Google Scholar 

  15. S.Y. Zhou, C. Lin, X. Rui, Preparation of nano-iron oxide particles by inverse microemulsion method. J. Fujian Med. Univ. 43, 148–152 (2009)

    Google Scholar 

  16. Y.Z. Liu, Research progress of fluid-liquid contact process reinforcement technology for high gravity impact flow-rotating packed bed. Chem. Ind. Eng. Prog. 28, 1101–1108 (2009)

    CAS  Google Scholar 

  17. W.Z. Jiao, Y.Z. Liu, G.S. Qi, A new impinging stream-rotating packed bed reactor for improvement of micromixing iodide and iodate. Chem. Eng. J. 157, 168–173 (2010)

    Article  CAS  Google Scholar 

  18. W.Z. Jiao, Y.Z. Liu, G.S. Qi, Micromixing efficiency of viscous media in novel impinging stream-rotating packed bed reactor. Ind. Eng. Chem. Res. 51, 7113–7118 (2012)

    Article  CAS  Google Scholar 

  19. Y.Z. Liu, Y. Guo, Y. Li et al., Synthesis of 2,4-dihydroxybenzoic acid copper (II). Chin. J. Synth. Chem. 14, 269–271 (2006)

    Article  Google Scholar 

  20. H.Y. Shen, Y.Z. Liu, P.C. Ma et al., Effect of different preparation methods on properties of nanometer magnesium hydroxide. Chem. Prog. 35, 1149–1153 (2016)

    Google Scholar 

  21. H.L. Fan, S.F. Zhou, G.S. Qi et al., Continuous preparation of Fe3O4 nanoparticles using impinging stream-rotating packed bed reactor and magnetic property thereof. J. Alloys Compds. 662, 497–504 (2016)

    Article  CAS  Google Scholar 

  22. Malvin Instruments Limited, Marvin MS 2000 Laser Particle Size Analyzer User Manual (The Yellow River Water Conservancy Press, Yellow River Basin, 2001)

    Google Scholar 

  23. H.F. Zhou, C. Zhang, X.D. Wang, H.Q. Li, Z.J. Du, Fabrication of TiO2-coated magnetic nanoparticles on functionalized multi-walled carbon nanotubes and their photocatalytic activity. Synth. Methods 161, 2199–2205 (2011)

    Article  CAS  Google Scholar 

  24. X.B. Yu, G.H. Wang, Y.Q. Luo, H.X. Li, Characterization of Fe/Ti/Si complex particles prepared by the sol–gel method and their photocatalytic reactivity for liquid-phase oxidation of tetracycline. Acta Chim. Sin. 05, 548–553 (2000)

    Google Scholar 

  25. Q.H. He, Z.X. Zhang, J.W. Xiong et al., A novel biomaterial-Fe3O4:TiO2 core-shell nano particle with magnetic performance and high visible light photocatalytic activity. Opt. Mater. 31, 380–384 (2008)

    Article  CAS  Google Scholar 

  26. K. Thanigai Arul, E. Manikandan, R. Ladchumananandasivam et al., Novel polyvinyl alcohol polymer based nanostructure with ferrites co-doped with nickel and cobalt ions for magneto-sensor application. Polym. Int. 65, 1482–1485 (2016)

    Article  Google Scholar 

  27. L. Li, Y.J. Feng, Y.Z. Liu et al., Titanium dioxide nanoparticles modified by salicylic acid andarginine: structure, surface properties and photocatalytic decomposition of p-nitrophenol. Appl. Surf. Sci. 36, 627–635 (2016)

    Article  CAS  Google Scholar 

  28. B. Sathyaseelan, E. Manikandan, V. Lakshmanan et al., Structural, optical and morphological properties of post-growth calcined TiO2, nanopowder for opto-electronic device application: ex situ studies. J. Alloys Compds. 671, 486–492 (2016)

    Article  CAS  Google Scholar 

  29. F. Fang, J. Kennedy, E. Manikandan et al., Morphology and characterization of TiO2 nanoparticles synthesized by arc discharge. Chem. Phys. Lett. 521, 86–90 (2012)

    Article  CAS  Google Scholar 

  30. R. Taziwa, E.L. Meyer, E. Siderashaddad et al., Effect of carbon modification on the electrical, structural, and optical properties of electrodes and their performance in labscale dye-sensitized solar cells. Int. J. Photoenergy 2012, 1022–1031 (2012)

    Article  Google Scholar 

  31. P. Liu, H. Liu, Y.Y. Zhang et al., Preparation of TiO2/NiFe2O4 magnetic nanometer photocatalyst and its photocatalytic activity. Environ. Pollut. Contr. 31, 56–63 (2009)

    Google Scholar 

  32. J.Y. Chen, Y.X. Qian, X.Z. Wei, Comparison of magnetic-nanometer titanium dioxide/ferriferous oxide (TiO2/Fe3O4) composite photocatalyst prepared by acid-sol and homogeneous precipitation methods. J. Mater. Sci. 45, 6018–6024 (2010)

    Article  CAS  Google Scholar 

  33. Y.J. Lu, P.R. Chang, P.W. Zheng, X.F. Ma, Rectorite–TiO2–Fe3O4 composites: assembly, characterization, adsorption and photodegradation. Chem. Eng. J. 255, 49–54 (2014)

    Article  CAS  Google Scholar 

  34. S.Z. Liu, H.Q. Sun, S.M. Liu et al., Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts. Chem. Eng. J. 214, 298–303 (2013)

    Article  CAS  Google Scholar 

  35. Z.T. Huang, J.M. Geng, Industrial Catalysis (Chemical Industry Press, Beijing, 2006)

    Google Scholar 

  36. J. Gao, J. Yan, Y. Liu et al., A novel electro-catalytic degradation method of phenol wastewater with Ti/IrO2–Ta2O5 anodes in high-gravity fields. Water Sci. Technol. A 76, 662 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoling Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Zhang, Q., Liu, Y. et al. Preparation of Fe3O4/TiO2 magnetic photocatalyst for photocatalytic degradation of phenol. J Mater Sci: Mater Electron 29, 8258–8266 (2018). https://doi.org/10.1007/s10854-018-8832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8832-7

Navigation