Skip to main content
Log in

Enhancement of electro-optic and structural properties of TGS single crystals on doping with l-glutamic acid

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single crystals of pure and l-glutamic acid (LG) doped Triglycine Sulfate (TGS) crystals were grown by slow evaporation solution technique at ambient conditions. Effect of doping on various properties of the grown crystals was investigated. Powder X-ray diffraction (PXRD) studies confirmed the monoclinic system of crystal structure with lattice parameter a = ~ 9.28 Å, b = ~ 12.7 Å, and c = ~ 5.73 Å, and space group of P21. PXRD and Fourier-Transform Raman (FT-Raman) analysis confirmed that there is no new phase formation due to doping except a systematic variation in the intensity of the peaks in correlation with the morphology due to LG doping. The Raman bands obtained in the spectrum corresponds to NH3 vibrations, the stretching vibrations of COO, carboxyl vibrations, and vibrational modes of SO42−. Ultraviolet–Visible Spectroscopy (UV-Vis-NIR) analysis was carried out to see the changes in the optical transparency of pure TGS crystals due to LG doping. Optical band gaps (5.24 eV for PRTGS, and 5.07 eV for LGTGS) were calculated and found to decrease due to doping. The photoluminescence excitation and emission were studied. The thermal behavior of the grown crystal was investigated by Thermogravimetric analysis/Differential thermal analysis. Second harmonic generation (SHG) efficiency measurement showed the enhancement in the nonlinear optical characteristics of the as-grown pure and doped TGS single crystals. In the present study, the researchers found the good and comparable SHG efficiency with KDP in TGS crystals by LG doping for the first time. The surface morphology of the grown TGS single crystals was analyzed by using Scanning Electron Microscope. The mechanical studies showed the Mayer’s index (n) greater than 1.6 and thus predicting a soft-material nature of the as-grown crystals. The values of fracture toughness (Kc), brittleness indices (Bi), and yield strength (σν) were estimated for the crystals. The dielectric constant and the dielectric loss decreased with an increase in the value of frequency. Hysteresis loop showed a negligible change in the doped TGS. The above studies reveal the effect of incorporation of LG into the lattice of TGS crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. van der Geer, J.A.J. Hanraads, R.A. Lupton, J. Sci. Commun. 163, 51–59 (2010)

    Google Scholar 

  2. G. Su, Y. He, H. Yao, Z. Shi, Q. Wu, J. Cryst. Growth 209, 220–222 (2000)

    CAS  Google Scholar 

  3. G. Singh, P. Singh, S. Singh, Int. J. Res. Pract. Eng. Sci. 1, 110–113 (2012)

    Google Scholar 

  4. N. Sinha, N. Goel, B.K. Singh, M.K. Gupta, B. Kumar, J. Solid State Chem. 190, 180–185 (2012)

    CAS  Google Scholar 

  5. G. Montemmezzani, J. Fousek, P. Gunter, J. Stankoswka, Appl. Phys. Lett. 56, 2367 (1990)

    Google Scholar 

  6. N.T. Shanthi, P. Selvarajan, C.K. Mahadevan, Indian J. Sci. Technol. 2, 49–52 (2009)

    Google Scholar 

  7. D. Jayalakhsmi, J. Kumar, J. Cryst. Growth 310, 1497–1500 (2008)

    Google Scholar 

  8. N. Nakatani, T. Kikuta, T. Yamazaki, Ferroelectrics 368, 12–22 (2008)

    CAS  Google Scholar 

  9. J. Logeswari, Optoelectron. Adv. Mater. Rapid Commun. 2, 630–634 (2008)

    CAS  Google Scholar 

  10. R.S. Krishnan, K. Balasubramanian, Indian Inst. Sci. 48, 138–144 (1958)

    Google Scholar 

  11. E.M. Mihaylova, H.J. Byrne, J. Phys. Chem. Solid 61, 1919–1925 (2000)

    CAS  Google Scholar 

  12. A.J.J. Manoharan, N.J. John, V. Revathi, K.V. Rajendran, P.M. Andavan, Indian J. Sci. Technol. 4, 688–691 (2011)

    Google Scholar 

  13. Z. Kecong, S. Jiancheng, W. Min, F. Changshui, L. Mengkai, J. Cryst. Growth 82, 639–642 (1987)

    Google Scholar 

  14. P. Singh, M.M. Abdullah, S. Sagadevan, S. Ikram, J. Mater. Sci. 28, 6520–6528 (2017)

    CAS  Google Scholar 

  15. S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798 (1968)

    CAS  Google Scholar 

  16. K. Balasubramanian, P. Selvarjun, E. Kumar, Indian J. Sci. Technol. 3, 41–43 (2010)

    CAS  Google Scholar 

  17. P. Singh, M.M. Abdullah, M. Shakir, M. Hasmuddin, M.A. Wahab, Int. J. Pure Appl. Phys. 8, 9–19 (2012)

    Google Scholar 

  18. A. Parameswari, M.K. Dhas, A.M.F. Benial, Int. J. Sci. Eng. Res. 5, 3

  19. M. Hasmuddin, P. Singh, M. Shkir, M.M. Abdullah, N. Vijayan, G. Bhagavannarayana, M.A. Wahab, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 123, 376–384 (2014)

    CAS  Google Scholar 

  20. S. Gokul Raj, G.R. Kumar, R. Mohan, R. Jayavel, B. Varghese, Phys. Status Solid B 244, 558–568 (2007)

    Google Scholar 

  21. S. Suresh, D. Arivuoli, J. Miner. Mater. Charact. Eng. 10, 517–526 (2011)

    Google Scholar 

  22. F. Khanum, J. Podder, Int. J. Opt. (2012). https://doi.org/10.1155/2012/803797

    Article  Google Scholar 

  23. S. Suresh, Opt. Int. J. Light Electron Opt. 125, 1223–1226 (2014)

    CAS  Google Scholar 

  24. S. Suresh, Opt. Int. J. Light Electron Opt. 125, 950–953 (2014)

    CAS  Google Scholar 

  25. T. Bharathasarathi, V.S. Shankar, R. Jayavel, P. Murugakoothan, J. Cryst. Growth 311, 1147–1151 (2009)

    Google Scholar 

  26. F. Khanum, J. Podder, J. Crysatll. Process Technol. 1, 26–31 (2011)

    CAS  Google Scholar 

  27. P. Singh, M. Hasmuddin, M.M. Abdullah, M. Shkir, M.A. Wahab, Mater. Res. Bull. 48, 3926–3933 (2013)

    CAS  Google Scholar 

  28. S. Chennakrishnan, S.M. Ravi Kumar, C. Shanthi, R. srineevasan, T. Kubendiran, D. Sivavishnu, M.P. Raj, J. Taibah Univ. Sci. 11, 955–965 (2017)

    Google Scholar 

  29. P. Singh, M. Hasmuddin, M. Shakir, N. Vijayan, M.M. Abdullah, V. Ganesh, M.A. Wahab, Mater. Chem. Phys. 142, e154–e164 (2013)

    Google Scholar 

  30. H.N. Das, J. Podder, J. Therm. Anal. Calorim. 110, 1107–1112 (2012)

    CAS  Google Scholar 

  31. S. Gunasekaran, P. Venkatesan, G. Anand, S. Kumaresan, Int. J. Chem. Technol. Res. 4, 1072–1076 (2012)

    CAS  Google Scholar 

  32. K. Srinivasan, P. Dhansekran, J. Cryst. Growth 318, 1080–1084 (2011)

    CAS  Google Scholar 

  33. M. Shakir, V. Ganesh, M.A. Wahab, G. Bhagvennarayana, K.K. Rao, Mater. Sci. Eng. B 172(9), 9–14 (2010)

    CAS  Google Scholar 

  34. T. Bharthasarathi, O.P. Thakur, P. Murugakoothan, Physica B 405, 3943–3948 (2010)

    CAS  Google Scholar 

  35. S. karan, S.S. Gupta, S.P.S. Gupta, Mater. Chem. Phys. 69, 143 (2001)

    CAS  Google Scholar 

  36. E.M. Onitsch, Mikrosk 2, 131 (1947)

    Google Scholar 

  37. C. Hays, E.G. Kendall, Metallography 6, 275 (1973)

    CAS  Google Scholar 

  38. V. Gupta, K.K. Bamzai, P.N. Kortu, B.M. Wankyln, Mater. Chem. Phys. 89, 64–71 (2005)

    CAS  Google Scholar 

  39. C.B. Proton, R.D. Rawling, Br. Ceram. Trans. J. 88, 83–90 (1989)

    Google Scholar 

  40. K.K. Bamzi, P.N. Korthu, B.M. Wankyln, J. Mater. Sci. 4, 405–410 (2000)

    Google Scholar 

  41. J.P. Cahoon, W.H. Broughton, A.R. Katzuk, Metall. Trans. 2, 1979–1983 (1971)

    CAS  Google Scholar 

  42. K.C. Kwo, Dielectrics Phenomenon in Solids (Elsevier Academic press, London, 2004), p. 54

    Google Scholar 

  43. V.Y. Medvedev, T.A. Kuketaev, M.P. Tonronogov, Russ. Phys. J. 49, 1171–1180 (2006)

    Google Scholar 

  44. S. Suresh, A. Ramanand, D. Jayaraman, P. Mani, Optoelectron. Adv. Mater. Rapid Commun. 4, 1763–1765 (2010)

    CAS  Google Scholar 

  45. V. Krishnakumar, M. Rajaboopathi, R. Nagalakshmi, Adv. Mater. Lett. 2, 163–169 (2011)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saiqa Ikram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Abdullah, M.M., Sagadevan, S. et al. Enhancement of electro-optic and structural properties of TGS single crystals on doping with l-glutamic acid. J Mater Sci: Mater Electron 29, 7904–7916 (2018). https://doi.org/10.1007/s10854-018-8790-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8790-0

Navigation