Skip to main content
Log in

Boric acid assisted synthesis of WO3 nanostructures with highly reactive (002) facet and enhanced photoelectrocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This article describes the synthesis of monoclinic WO3 nanostructures with highly reactive (002) facets exposed through a facile hydrothermal method using boric acid as the guiding agent. The obtained WO3 plate films exhibit an excellent photocurrent density of 1.64 mA/cm2 at 1.2 V (vs. Ag/AgCl) and an IPCE value of 66.7% at 355 nm at a bias of 0.8 V (vs. Ag/AgCl). Furthermore, a maximum 2.8-time higher formic acid yields was obtained in a versatile photoanode-driven PEC CO2 reduction system. The pronounced enhancement in photoelectrocatalytic activity can be attributed to the reduced recombination of photogenerated electron–hole pairs, longer electron lifetime, larger photogenerated carrier density, higher reactivity for water oxidation and more effective production of active oxygen species on exposed (002) facets, which were obtained through the capping effect of boric acid. This work provides a facile and promising approach to synthesize the specific facet-exposed photocatalysts with better photoelectrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.J. Bard, M.A. Fox, Acc. Chem. Res. 28, 141–145 (1995)

    Article  Google Scholar 

  2. L. Jia, K. Harbauer, P. Bogdanoff, K. Ellmer, S. Fiechter, J. Mater. Sci. Technol. 31, 655–659 (2015)

    Article  Google Scholar 

  3. J. Wang, C.-j. Liu, ChemBioEng Rev. 2, 335–350 (2015)

    Article  Google Scholar 

  4. S. Han, Y.-C. Pu, L. Zheng, L. Hu, J.Z. Zhang, X. Fang, J. Mater. Chem. A 4, 1078–1086 (2016)

    Article  Google Scholar 

  5. S. Liu, L. Zheng, P. Yu, S. Han, X. Fang, Adv. Funct. Mater. 26, 3331–3339 (2016)

    Article  Google Scholar 

  6. S. Mohammed Harshulkhan, K. Janaki, G. Velraj, R. Sakthi Ganapthy, M. Nagarajan, J Mater Sci. 27, 4744–4751 (2016)

    Google Scholar 

  7. X.J. Wang, Y. Zhao, F.T. Li, L.J. Dou, Y.P. Li, J. Zhao, Y.J. Hao, Sci. Rep. 6, 24918–24926 (2016)

    Article  Google Scholar 

  8. L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Small 12, 1527–1536 (2016)

    Article  Google Scholar 

  9. M. Yagi, S. Maruyama, K. Sone, K. Nagai, T. Norimatsu, J. Solid State Chem. 181, 175–182 (2008)

    Article  Google Scholar 

  10. Z. Jiao, J. Wang, L. Ke, X.W. Sun, H.V. Demir, ACS Appl. Mater. Inter. 3, 229–236 (2011)

    Article  Google Scholar 

  11. F. Amano, D. Li, B. Ohtani, Chem. Commun. 46, 2769–2771 (2010)

    Article  Google Scholar 

  12. Y. Miseki, H. Kusama, H. Sugihara, K. Sayama, J. Phys. Chem. Lett. 1, 1196–1200 (2010)

    Article  Google Scholar 

  13. S.L. Liew, G.S. Subramanian, C. Seng Chua, H.-K. Luo, RSC Adv. 6, 19452–19458 (2016)

    Article  Google Scholar 

  14. M. Qamar, Z.H. Yamani, M.A. Gondal, K. Alhooshani, Solid State Sci. 13, 1748–1754 (2011)

    Article  Google Scholar 

  15. S. Sun, W. Wang, S. Zeng, M. Shang, L. Zhang, J. Hazard. Mater. 178, 427–433 (2010)

    Article  Google Scholar 

  16. F. Zhan, J. Li, W. Li, Y. Liu, R. Xie, Y. Yang, Y. Li, Q. Chen, Int. J. Hydrogen. Energ. 40, 6512–6520 (2015)

    Article  Google Scholar 

  17. F. Zhan, R. Xie, W. Li, J. Li, Y. Yang, Y. Li, Q. Chen, RSC Adv. 5, 69753–69760 (2015)

    Article  Google Scholar 

  18. F. Zhan, Y.H. Yang, W. Li, W. Liu, Y. Li, Q. Chen, RSC Adv. 6, 10393–10400 (2016)

    Article  Google Scholar 

  19. M. Mali, H. Yoon, M. Kim, M. Swihart, S. AlDeyab, S. Yoon, Appl. Phys. Lett. 106, 151603–151608 (2015)

    Article  Google Scholar 

  20. F. Zhan, J. Li, W. Li, Y. Yang, W. Liu, Y. Li, J. Power Sour. 325, 591–597 (2016)

    Article  Google Scholar 

  21. S.S. Kalanur, Y.J. Hwang, S.Y. Chae, O.S. Joo. J. Mater Chem. A 1, 3479–3487 (2013)

    Article  Google Scholar 

  22. J. Su, X. Feng, J.D. Sloppy, L. Guo, C.A. Grimes, Nano Lett. 11, 203–208 (2011)

    Article  Google Scholar 

  23. J. Yang, W.Z. Li, J. Li, D.B. Sun, Q.Y. Chen, J. Mater. Chem. 22, 17744–17752 (2012)

    Article  Google Scholar 

  24. N.R. Sieb, N.-c. Wu, E. Majidi, R. Kukreja, N.R. Branda, B.D. Gates, ACS Nano 3, 1365–1372 (2009)

    Article  Google Scholar 

  25. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett. 12, 1690–1696 (2012)

    Article  Google Scholar 

  26. X. Lu, T. Zhai, X. Zhang, Y. Shen, L. Yuan, B. Hu, L. Gong, J. Chen, Y. Gao, J. Zhou, Adv. Mater. 24, 938–944 (2012)

    Article  Google Scholar 

  27. Y.P. Xie, G. Liu, L. Yin, H.-M. Cheng, J. Mater. Chem. 22, 6746–6751 (2012)

    Article  Google Scholar 

  28. S. Xie, X. Han, Q. Kuang, J. Fu, L. Zhang, Z. Xie, L. Zheng, Chem. Commun. 47, 6722–6724 (2011)

    Article  Google Scholar 

  29. M. Liu, L. Piao, W. Lu, S. Ju, L. Zhao, C. Zhou, H. Li, W. Wang, Nanoscale 2, 1115–1117 (2010)

    Article  Google Scholar 

  30. S. Wang, H. Chen, G. Gao, T. Butburee, M. Lyu, S. Thaweesak, J.-H. Yun, A. Du, G. Liu, L. Wang, Nano. Energy 24, 94–102 (2016)

    Article  Google Scholar 

  31. J. Zhang, P. Zhang, T. Wang, J. Gong, Nano. Energy 11, 189–195 (2015)

    Article  Google Scholar 

  32. D. Zhang, S. Wang, J. Zhu, H. Li, Y. Lu, Appl. Catal. B 123, 398–404 (2012)

    Article  Google Scholar 

  33. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature 453, 638–641 (2008)

    Article  Google Scholar 

  34. X. Zhao, W. Jin, J. Cai, J. Ye, Z. Li, Y. Ma, J. Xie, L. Qi, Adv. Funct. Mater. 21, 3554–3563 (2011)

    Article  Google Scholar 

  35. S. Han, J. Li, X. Chen, Y. Huang, C. Liu, Y. Yang, W. Li, Int. J. Hydrogen Energy 37, 16810–16816 (2012)

    Article  Google Scholar 

  36. A. Subrahmanyam, A. Karuppasamy, Sol. Energ. Mater. Sol. C. 91, 266–274 (2007)

    Article  Google Scholar 

  37. C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, J. Am. Chem. Soc. 123, 10639–10649 (2001)

    Article  Google Scholar 

  38. W.Z. Li, J. Li, X. Wang, J. Ma, Q.Y. Chen, Int. J. Hydrogen Energy 35, 13137–13145 (2010)

    Article  Google Scholar 

  39. W.Z. Li, J. Li, X. Wang, J. Ma, Q.Y. Chen, Appl. Surf. Sci. 256, 7077–7082 (2010)

    Article  Google Scholar 

  40. Y. Guo, X. Quan, N. Lu, H. Zhao, S. Chen, Environ. Sci. Technol. 41, 4422–4427 (2007)

    Article  Google Scholar 

  41. N.T. Hahn, C.B. Mullins, Chem. Mater. 22, 6474–6482 (2010)

    Article  Google Scholar 

  42. G. Wang, Y. Ling, D.A. Wheeler, K.E. George, K. Horsley, C. Heske, J.Z. Zhang, Y. Li, Nano Lett. 11, 3503–3509 (2011)

    Article  Google Scholar 

  43. C. Liu, Y. Yang, W. Li, J. Li, Y. Li, Q. Chen, Sci. Rep. 6, 23451–23458 (2016)

    Article  Google Scholar 

  44. V. Chakrapani, J. Thangala, M.K. Sunkara, Int. J. Hydrogen Energy 34, 9050–9059 (2009)

    Article  Google Scholar 

  45. S.J. Hong, H. Jun, P.H. Borse, J.S. Lee. Int. J. Hydrogen Energy 34, 3234–3242 (2009)

    Article  Google Scholar 

  46. W. Li, J. Li, X. Wang, S. Luo, J. Xiao, Q. Chen, Electrochim. Acta 56, 620–625 (2010)

    Article  Google Scholar 

  47. F. Amano, D. Li, B. Ohtani, J. Electrochem. Soc. 158, K42–K46 (2011)

    Article  Google Scholar 

  48. J.Y. Zheng, G. Song, J. Hong, T.K. Van, A.U. Pawar, D.Y. Kim, C.W. Kim, Z. Haider, Y.S. Kang, Cryst. Growth Des. 14, 6057–6066 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Nature Science Foundation of China (21471054), Hunan Provincial Natural Science Foundation of China (No. 2015JJ2043) and Science and Technology Planning project of Hengyang (No. 2014KJ24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 714 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, F., Liu, W., Li, W. et al. Boric acid assisted synthesis of WO3 nanostructures with highly reactive (002) facet and enhanced photoelectrocatalytic activity. J Mater Sci: Mater Electron 28, 13836–13845 (2017). https://doi.org/10.1007/s10854-017-7230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7230-x

Navigation