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ABSTRACT
The purpose of this review is to report on the state-of-the-art on the interaction of 
moisture with natural materials and fabricated biomimetic functional materials, 
with an emphasis upon the hygro-responsive behaviour of wood. The primary 
objective is to examine how water sorption affects dimensional behaviour and 
how knowledge of this property in natural plant-based (mainly, but not exclu-
sively wood) materials can be used to inform biomimetic design of moisture-
responsive materials and devices. The study examines the literature on natural 
and bio-inspired materials, concentrating upon sorption kinetics, water migration 
and location of the sorbed water in the materials and their microstructure and 
mechanical response of the microstructure and how this affects molecular mobil-
ity of the sorbate translating to macrostructural changes. Also included within 
this review, it is an overview of the main experimental techniques which have 
been used to investigate the interaction of water with these materials at molecu-
lar length scales and how modern techniques can resolve the response of these 
materials at the cell wall level.

Introduction

This review explores the relationship between sorp-
tion behaviour and structure in composite materials 
that have a hygro-responsive matrix combined with 
non-responsive elements such as fibres, rods, plates 
or sheets. The particular focus is upon furthering the 
understanding of the sorption behaviour of wood in 
particular and natural fibres to a lesser extent, but 
biomimetic materials based upon these principles are 

also included. This type of material exhibits swelling 
behaviour in the presence of moisture, but because the 
‘inert’ phase exhibits some form of structural heteroge-
neity, the observed swelling behaviour is consequently 
anisotropic. This is often a problem with wood-based 
materials but can be used to advantage when design-
ing biomimetic structures.

The interaction of moisture with natural hygro-
responsive materials (such as wood and textiles) has 
been a topic of immense scientific interest for over a 
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century. Much initial research was directed at trying 
to better understand the water vapour sorption behav-
iour of wood to improve kiln-drying schedules and to 
reduce the negative properties associated with dimen-
sional instability [1]. One of the key pieces of informa-
tion for understanding the relationship between solids 
and water vapour is the sorption isotherm, which is 
the relationship between the relative humidity (RH—
also referred to as water activity aw) of the surround-
ing atmosphere and the moisture content (MC) of the 
material at equilibrium (equilibrium moisture content, 
EMC) at a constant temperature. One critical aspect 
of making such measurements is to ensure that a true 
equilibrium state has been achieved, although wood 
in service conditions seldom achieves an equilibrium 
state. There are many sorption isotherm models that 
have been developed to describe the sorption behav-
iour of natural materials, and this topic has been very 
well explored elsewhere e.g. [2–8]. However, these 
models suffer from various limitations, and there is 
still a need to develop a theory that better explains 
the observed behaviour [2, 9], not just for wood, but 
other lignocellulosic/cellulosic materials as well as 
foodstuffs, textiles, etc.

Hygro-responsive materials change dimensions 
when they interact with water vapour. They com-
prise a dynamic polymeric structure which absorbs 
water vapour, but they may also have an essentially 
inert fibrillar or layered structure embedded within 
the hygro-responsive matrix. In the latter case, these 
materials exhibit anisotropic responses when they 
gain or lose water molecules. For lignocellulosic 
materials, such as wood, sorption models addition-
ally need to include consideration of hygro-inert rein-
forcing crystalline cellulose microfibrils embedded in 
a hygro-responsive amorphous lignin/hemicellulose 
matrix. It is argued in this review that the properties 
of these materials are best described by consideration 
of the molecular dynamics in these materials, giving 
rise to the phenomena, such as swelling pressure, the 
sigmoidal sorption isotherm, sorption hysteresis, char-
acteristic dynamic sorption behaviour and associated 
changes in static and dynamic mechanical properties 
(modulus, strength and viscoelastic behaviour).

Studies of moisture interactions with natural mate-
rials are very instructive from a biomimetic design 
perspective, and the review also briefly covers this 
subject from the perspective of how water sorption/
desorption leads to dimensional changes. The inten-
tion of the review is not to analyse the existing and 

very comprehensive literature of biomimetic moisture-
activated materials; but rather to approach the sub-
ject from the point of view of how location of sorbed 
water in hierarchical heterogenous natural materials 
(such as wood) affects the dimensional behaviour of 
these materials. Such studies may provide insights 
into refining the design of new biomimetic moisture-
activated ‘smart’ materials.

The next section of the review considers some basic 
principles which may assist with a generic under-
standing of the sorption properties of the dynamic 
polymeric matrix of natural materials and how this 
relates to dimensional changes.

General considerations regarding polymer 
microstructure and moisture‑induced 
behaviour

Water in rubbery and glassy polymers

There are materials which absorb water vapour 
because they contain pores of small dimensions allow-
ing for capillary condensation. However, these mate-
rials are inert and do not swell to accommodate the 
absorbed water (an example in this category would be 
activated carbon [10]); materials of this type generally 
exhibit IUPAC Type V sorption isotherms [11], or Type 
I if they are hydrophilic [12] (Fig. 1).

Hygro-responsive materials are, for the purposes 
of this review, defined as a class of polymeric materi-
als that contain chemical moieties that interact with 
water molecules and exhibit molecular mobility. They 
can therefore change their structure to accommodate 
the sorbed water molecules and to allow for trans-
portation of these penetrant molecules through the 
macromolecular network. This molecular mobility is 
facilitated by the presence of the sorbed water mol-
ecules which creates additional void volume within 
the structure (usually referred to as plasticization or 
softening) resulting in macroscopic viscoelastic behav-
iour [13, 14]. Transport therefore does not rely on an 
interconnected porous structure (which is necessary in 
inert materials), but rather mobility of the polymeric 
matrix molecules. Materials of this class exhibit iso-
therms which are classed as Type II, but also often 
exhibit hysteresis between the absorption and des-
orption branches of the isotherm. Before a discussion 
of the sorption behaviour of these systems, there is a 
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brief introduction to how solvent systems interact with 
dynamic polymers.

The Flory–Huggins (F–H) model is a relatively 
simple theory that is often invoked to describe the 
solvent-induced swelling behaviour of polymers. The 
F–H approach uses a lattice-based model, which con-
siders the entropy of mixing of a polymer chain in a 
solvent. The parameters used to describe the sorption 
behaviour are the volume fraction of the polymer, vol-
ume fraction of the solvent and a term to describe the 
solvation of the polymer. The sorption behaviour is 
expressed as follows:

where: p1 is the pressure of the solvent, p1
0 is the satu-

ration pressure of the solvent, ϕ1 is the volume fraction 
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of the sorbate and ϕ2 is the volume fraction of the 
polymer. The term χ is the Flory–Huggins interaction 
parameter, which is related to the difference in energy 
between the solvent molecule in the pure solvent (in 
this case, liquid water) and the molecule in the poly-
mer matrix. The F−H interaction parameter is a meas-
ure of thermodynamic miscibility of a solvent with a 
polymer in binary systems and is treated as a constant 
in the F–H theory. The relationship between the sorp-
tion curve and the interaction parameter is shown in 
Fig. 2. The F–H polymer dissolution model produces 
an isotherm that exhibits a continuous upward curva-
ture as the RH increases up to a maximum, but finite 
value at total saturation (IUPAC Type III), with the 
steepness of the curve controlled by the magnitude 
of the interaction parameter (χ). A strong interaction 
between the solvent and polymer yields a low value 
of χ (Fig. 2).

Although a popular approach, the F–H model 
has been shown to have shortcomings. It is possible 
to determine χ independently using, e.g. scattering 
methods to determine polymer–solvent interactions 
[15], but this can be problematical and different 
measurement methods usually give different values 
for χ [16]. When fitting to sorption isotherm data, it is 
more common to use the interaction parameter as a 
fitting variable for experimental isotherm data, rather 
than using it as a fixed parameter obtained from an 

Figure 1   Definitions of different sorption isotherms according to 
IUPAC. Lignocellulosic materials exhibit Type II isotherms, but 
also with hysteresis.

Figure  2   Sorption isotherm generated by the Flory–Huggins 
model, showing the influence of variation in the interaction 
parameter. A decrease in this parameter indicates a stronger sol-
vent-polymer interaction.
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independent experiment, which is unsatisfactory for 
a fundamental approach to the problem. According 
to F–H theory, the interaction parameter should be 
independent of the concentration and molecular 
weight of the polymer, but in practice, this inde-
pendence does not usually hold, especially for polar 
systems [17–19]. It has been shown that the interac-
tion parameter can vary depending on the inhomo-
geneity of distribution of the solvent molecules [20] 
as well as exhibiting a concentration dependence [20, 
21]. Furthermore, the underlying lattice model has 
been shown to have limitations when representing 
the behaviour of real polymers [22].

Polymer hydrogels (PHGs) are a sub-class of 
hygro-responsive polymers. Sorption isotherms of 
PHGs typically exhibit a shape that is character-
ized by IUPAC Type II or Type III curves. PHGs 
can exhibit extremely high levels of water uptake, a 
property that is at least partially determined by the 
crosslinking density of the polymer structure [23]. 
They are not soluble in water unless the crosslink-
ing structure is not stable in the presence of water or 
can be disturbed by the application of mechanical 
energy. There also exist ‘dual network’ hydrogels 
which have chemical and physical (e.g. hydrogen 
bonding) crosslinking regions. Such materials exhibit 
mechanical behaviour that is dependent upon an 
applied strain rate [24].

In the context of the present review, the hydrophilic 
chemical entities associated with the polymers that 
are of most interest are hydroxyl (OH) groups. These 
groups are capable of hydrogen bonding to sorbed 
water molecules and are usually referred to as primary 
sorption sites for this reason. A higher concentration of 
OH groups in the polymer increases the hydrophilicity 
of the polymer and consequently affects the interac-
tion parameter with water as a solvent [25].

It is thought that hydrogen bonding to OH groups 
attached to the polymer chains reduces the mobility 
of sorbed water molecules [26]. As the concentration 
of water in the expanding polymer network increases, 
these incoming molecules are associated with other 
water molecules rather than the essentially static 
polymeric OH groups and consequently have much 
higher mobility compared to those H-bonded to the 
sorption sites. However, the whole system is dynamic, 
with constant exchange of water molecules between 
these different environments [27]. This leads to the 
question of whether the different water environments 
can be readily identified and whether there are any 

measurable differences in terms of mobility, which is 
discussed later.

The water molecules in the polymer matrix also 
create space between molecules within the network, 
which results in increased mobility of the polymer 
chains. This phenomenon is referred to as plastici-
zation. Before any further discussion, it is helpful at 
this stage to consider the different types of volume 
that exist within a polymeric matrix. According to 
the model of Duda and Zielinski, polymer volume is 
divided into three components [28]:

•	 Occupied volume is the volume occupied by the 
polymeric components and is constant for all tem-
peratures.

•	 Interstitial free volume is the free volume that is not 
accessible by penetrant molecules and represents 
the free volume arising from vibrational motion of 
the polymer and increases slightly with tempera-
ture.

•	 Hole free volume (herein referred to as free vol-
ume) is the volume arising from relaxation and 
plasticization of the polymer upon heating and 
cooling. This free volume is accessible by penetrant 
molecules and can be changed by the presence of 
these molecules. In rubbery polymers, the free vol-
ume is in equilibrium, but in glassy polymers, the 
molecular relaxations are slow and extra hole free 
volume may become trapped within the structure.

In some hydrogel systems at low MC, there is 
insufficient free volume for the polymer segments to 
change structure without cooperative motion of adja-
cent segments [29], which is characteristic of glassy 
polymers below the glass transition temperature (Tg) 
[30]. A glassy state in a polymer system occurs when 
the rate of cooling of that system is faster than the rate 
of relaxation of that system and free volume can be 
trapped within the matrix. Glassy polymers exhibit 
non-Fickian diffusion processes because the rate of 
diffusion is determined by the polymer relaxation 
processes, rather than a concentration gradient. The 
viscoelastic relaxation of amorphous polymers in the 
glass transition region is best described in terms of a 
relaxation spectrum, with the characteristic relaxation 
times spanning several decades [29, 31]. Solvents can 
increase the free volume in the polymer matrix, which 
results in an increase in molecular mobility through 
the matrix. Characteristics of the sorption behaviour 
of glassy polymers are the sigmoidal shape of the 
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sorption isotherm, hysteresis between the adsorption 
and desorption loops, as well as non-Fickian sorption 
kinetics [30, 32].

A popular model describing the changes in free 
volume of glassy polymers due to penetration by sol-
vent molecules has been developed by Vrentas and 
Vrentas [33, 34], which produces the observed sigmoi-
dal isotherm. This model is an extension of the F–H 
model (Eq. 1), with the introduction of a new term, F, 
which takes account of the elastic energy stored in the 
polymer matrix, when sorption occurs below Tg. The 
model is represented as follows:

The magnitude of the F term can be calculated from 
first principles, given knowledge of the heat capaci-
ties of the polymer above and below Tg, the molecular 
weight of the penetrant, the Tg of the polymer–solvent 
combination and the mass fraction of the polymer [35]. 
At Tg, the term F becomes zero and the equation con-
sequently reduces to the F–H expression.

The model of Vrentas and Vrentas was further 
developed to account for hysteresis between the 
absorption and desorption branches of the sorption 
isotherm in glassy polymeric materials, with the intro-
duction of a new parameter (k), which is calculated 
based upon knowledge of the glass transition tempera-
ture of the pure polymer [34].

A key concept on which the model is based is that 
removal of penetrant molecules from the polymer-
penetrant mixture results in the creation of a glassy 
structure and that this process can be considered 
mathematically equivalent to cooling the polymer-
penetrant mixture. Since the terms F and k can both 
be calculated from first principles, this means that 
both the absorption and desorption branches of the 
isotherm can be predicted without the use of arbitrary 
fitting parameters (at least in principle) [36].

Both the F–H and the Vrentas–Vrentas (V–V) mod-
els were initially developed to explain the sorption 
behaviour of non-polar polymer–solvent systems. 
However, the use of the V–V model has been extended 
to describe polar polymer systems interacting with 
water, but with mixed results [36–41]. Although 
sorption and desorption in a glassy polymer are a 

(2)
p
1

p
0

1

= �
1
exp

(

�
2
+ ��2

2
+ F

)

(3)
p
1

p
0

1

= �
1
exp

(

�
2
+ ��2

2
+ kF

)

non-equilibrium process [42], Argatov and Kocherbi-
tov argue that models of the sorption and diffusion 
phenomena can still be based upon a classical thermo-
dynamic approach [41]. They have developed a model 
that is based upon the F–H isotherm but reintroduces 
the idea of a solvent concentration dependence of the 
χ interaction parameter, which is related to the V–V F 
term in the following way:

They maintain that the use of a concentration 
dependent interaction parameter is a requirement for 
non-equilibrium systems in order to describe observed 
experimental behaviour of sorption with glassy poly-
mers and note that this has also been used elsewhere 
[43]. Argatov and Kocherbitov have studied the vari-
ation in the interaction parameter using experimen-
tal data and used this information to determine the 
onset of the glass transition temperature [41]. There 
is much interest in this subject in the coatings field, 
and researchers have developed diffusion models for 
glassy polymers which are based upon irreversible 
rather than classical thermodynamics [44]. There exists 
a considerable body of literature on this topic which 
falls outside the boundaries of this review, but some 
references can be found in Arya et al. [30].

Much of the early work on water sorption in gel sys-
tems was conducted by Wilfred Barkas of the Forest 
Products Laboratory in Princes Risborough, UK. He 
explored the use of gel models to explain the sorption 
behaviour of wood and noted that in circumstances 
where the swelling of a gel was restricted in some way, 
that shear stresses are developed; resulting in sorption 
hysteresis being observed [45]. It has been shown that 
the water uptake rate and extent in sorption isotherms 
is reduced in gels which have a higher crosslink den-
sity [20, 46, 47]. In one study, it was shown that the 
extent of hysteresis decreased as the crosslink density 
increased, which is contrary to what would be pre-
dicted [47]. However, the hysteresis in this case was 
attributed to water that was somehow trapped within 
the polymer network during the desorption cycle, but 
this is not the origin of the hysteresis phenomenon 
discussed here. The intention when recording reliable 
sorption isotherms is to avoid water or solvents of any 
kind being trapped as inclusion compounds within 
the polymer matrix [48, 49]. It is interesting to note 
that the observed sorption isotherm and associated 

(4)� = �
0
+

F

�2

2

7599



	 J Mater Sci (2024) 59:7595–7635

hysteresis loop of crosslinked hydrogels is affected 
by the previous history of the sample [50]. Sorption 
behaviour which is dependent of the previous sorp-
tion history of the sample is typically observed with 
glassy polymers [33, 51–54].

The essential point made in this review is that an 
understanding of sorption phenomena in many hygro-
responsive natural materials can only be obtained 
through an approach that considers glassy polymers, 
the glass transition temperature, free volume and the 
related mobility of the matrix polymers as affected by 
the sorbate solvent molecules (in this case water). For 
solution-based models, the presence of OH groups 
affects the interaction between water and the polymer, 
but in such models, it is not necessary to consider the 
these groups as sorption sites.

Sorption sites, water clustering and nano/
microporosity

It is usually assumed that at low levels of uptake, 
sorbed water molecules will diffuse in some manner 
through the polymer matrix until they reach a ‘sorp-
tion site’ (usually a hydroxyl group). In models of this 
type, OH groups have a very significant role to play in 
determining sorption behaviour but usually exclude 
other important phenomena, such as mechano-sorp-
tive responses. The experimental determination of 
accessible OH groups in polymeric materials com-
monly uses hydrogen/deuterium exchange between 
deuterium oxide as a sorbate and the material of inter-
est. Quantification of the thus-generated -OD groups 
can use gravimetric, IR or NMR methods [48, 55–57]. 
The distribution of sorbed water molecules in the pol-
ymer matrix will depend upon the concentration of 
OH groups that are available as sorption sites within 
a given volume (accessible OH groups) and a balance 
between the tendency of water molecules to cluster 
around these sorption sites or to distribute throughout 
the polymer matrix in the manner of a solvent.

A common method used to determine the extent 
of water clustering in polymer-water systems is that 
introduced by Zimm and Lundberg [32, 43, 58, 59]. 
The Zimm–Lundberg (Z–L) method has the advan-
tage that clustering data can be determined directly 
from the equilibrium sorption isotherm but suffers 
from the disadvantage that it is not a direct measure 
of actual cluster size. In order to determine appli-
cability to water-polymer systems, there have been 
studies where the predictions of the Z–L model have 

been independently tested using FTIR spectroscopy, 
which showed that the Z–L approach tended to under-
estimate cluster size. [60]. As already noted with the 
F–H model, the failure of the Z–L model to correctly 
describe water solubility and water clustering in 
glassy polymers is partially due to the equilibrium 
constraints on these models in contrast with the non-
equilibrium conditions which apply below Tg [60, 61]. 
In addition (as with the F–H model), the Z–L model 
was originally developed to describe solvent solubil-
ity in weakly interacting non-polar systems, which 
means that extension to water-polymer systems may 
not be reliable. This has resulted in the development of 
improved models for the clustering of water molecules 
in hydrophilic polymers, e.g. [62, 63]. Other cluster-
ing models are also available, such as the Langmuir/
Flory–Huggins model [64]. It should be noted that 
the clustering of water molecules within the polymer 
matrix can lead to marked deviations from Henry’s 
Law [28].

The water molecules which are involved in H-bond-
ing with the polymeric OH groups are usually referred 
to as ‘bound’ water, whereas the water molecules 
which are not directly associated with sorption sites 
are called ‘free’, or sometimes ‘intermediate’ water 
[65]. These terms can lead to confusion, in that some 
papers refer to bound water as the water that is located 
within the polymer matrix and free water as exist-
ing in larger pores that may be located in the matrix. 
In wood, the bound water usually means the water 
located within the cell wall, whereas the free water is 
located in larger void spaces, such as the cell lumen. 
Water molecules that hydrogen bond to polymer sorp-
tion sites have less mobility compared to water mol-
ecules that are not so directly bonded. However, the 
residence times of water molecules in association with 
matrix OH groups may be very short, meaning that 
such molecules are in reality indistinguishable from 
the free water molecules, due to very rapid exchange 
[27]. Water mobility can be determined using nuclear 
magnetic resonance (NMR) relaxation times or dielec-
tric relaxation spectroscopy (DRS), [65], as is discussed 
later. In NMR, the relaxation of protons is mainly 
dipolar and in water both translation and rotation 
relaxation mechanisms are important. In addition, 
the exchange of protons between the water molecules 
and polymer hydroxyl sites is also a significant relaxa-
tion mechanism [27, 66–68]. This makes the determi-
nation of water mobility in the matrix problemati-
cal. The water molecules in ‘bound’ and ‘unbound’ 
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environments would be expected to exhibit different 
mobilities, although exchange between the different 
environments can be very rapid, so individual mol-
ecules are unlikely to exist in a specific state for long.

There exist nm-sized pores within the polymer 
matrix that are often termed micropores (IUPAC defi-
nition meaning pores with diameter less than 2 nm), 
but the more general term ‘nanopores’ is used in this 
review to mean nm-sized pores, with no strict defi-
nition. Water that is confined within the nanopores 
of the polymer structure exhibits a freezing point 
depression compared to unconfined water [69]. This 
freezing point depression is caused by a combina-
tion of osmotic and capillary effects. It is possible to 
determine the relationship between the freezing point 
depression and water amount using techniques, such 
as NMR [27, 70] or calorimetry [71]. The results are 
usually expressed as a pore size distribution (PSD), 
where the pore size is related to the freezing point 
depression by the Gibbs–Thomson equation. There is 
also a proportion of the water that is described as non-
freezing, in that it does not exhibit a phase change at 
reduced temperatures and this population is assigned 
to water that is in a ‘bound’ state, i.e. closely associ-
ated with the polymer network [72]. However, it is not 
necessary to invoke a special state of water (‘bound’) 
to explain non-freezing water and it is difficult to 
provide unambiguous evidence for the existence of 
water that might be described as ‘bound’ [27]. Other 
experiments with non-polar solvents in swollen poly-
mer networks have also cast doubt on the hypothesis 
that non-freezing water is necessarily attributable to 
hydrogen bonding with polar groups on the polymer 
[73]. It is clearly problematical to assign water popula-
tions unambiguously to ‘bound’ or ‘unbound’ states.

The pre-existing (residual) free volume within the 
polymer matrix consists of nm-sized pores, but the 
geometry of this nanoporosity can evolve as water 
molecules enter and exit the polymer matrix and this 
dynamic behaviour is referred to as transient poros-
ity. The evolving properties of this nanoporosity can 
be investigated using positron annihilation lifetime 
spectroscopy (PALS) [74]. For example, PALS meas-
urements in carbohydrate matrices in sorption experi-
ments show that the nanopore size initially decreases 
but then increases as the MC is raised, due to the 
accompanying plasticization of the polymer chains 
[75–77]. The initial decrease is observed because 
the initially ‘empty’ voids associated with residual 
free volume begin to fill with water molecules. The 

existence of transient microporosity in polymers, gels 
and the cell wall of plant materials is an important fac-
tor which must be considered when explaining sorp-
tion and diffusion phenomena. This dynamic behav-
iour is quite different from an inert porous material, 
such as a zeolite or nanoporous carbon, in terms of 
hygroscopic properties and origin of hysteresis [78, 
79].

Sorption kinetics and diffusion 
within the polymer matrix

When water molecules enter a polymeric matrix, 
the macromolecules will rearrange their structure to 
accommodate the sorbed water molecules at a rate that 
depends on the ambient temperature and the concen-
tration of solvent, in addition to steric effects related to 
the chemical structure. The relative time scales of the 
diffusion of solvent molecules and polymer relaxation 
determine the nature of the transport process. This can 
be represented in terms of a diffusion Deborah num-
ber (De), which is the ratio of the characteristic relaxa-
tion time and the diffusion time [80]. For a value of De 
less than 1, the changes in polymer structure occur 
much faster than the rate of diffusion of the solvent 
molecules and classical Fickian diffusion is observed. 
This is typical for rubbery polymers above Tg. When 
De is greater than 1, the polymer chains rearrange 
much more slowly compared to the rate of diffusion of 
solvent molecules and the diffusion process is relaxa-
tion-limited rather than determined by a concentration 
gradient. This behaviour is characteristic of polymers 
below Tg, and diffusion of water through glassy poly-
mers is non-Fickian in nature [60]. When De is close 
to 1, anomalous diffusion is observed, with a coupling 
of relaxation-limited and Fickian processes. Pseudo-
Fickian models of this type include that developed by 
Berens and Hopfenberg, amongst others [81–84]. The 
relaxation term is actually an average of many relaxa-
tion processes, but for many polymer/penetrant sys-
tems, a single relaxation term is sufficient to represent 
the behaviour in macroscopic systems [85]. The sorp-
tion kinetics of glassy polymers is often interpreted 
using a model which incorporates two independent 
relaxation terms describing contributions from diffu-
sion and relaxation processes [81, 82]. Another inter-
pretation for a two-component kinetic model is the 
movement of a penetrant solvent front through the 
sample with associated swelling [86].
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This two-component anomalous diffusion process 
is not to be confused with the dual-mode model which 
has been developed to describe sorption in glassy 
polymers. The dual-mode model assumes that there 
are two populations of water, one of which acts as a 
solvent for the polymer (called the Henry’s Law popu-
lation) and is therefore intimately mixed within the 
structure. The other population is sorbed onto the sur-
face of nanopores that are considered to exist within 
the structure (called the Langmuir population) as a 
consequence of excess free volume that is frozen into 
the glassy matrix below the glass transition tempera-
ture [61, 87, 88].

Although dual-mode sorption models can quite 
successfully model the sorption behaviour of glassy 
polymers, they are empirical; requiring temperature-
specific parameters to be evaluated for sorption and 
different ones for desorption. Furthermore, in order 
to describe differences between absorption and des-
orption isotherms, it is necessary to assume that there 
is an exchange between the two water populations (a 
proportion of the dissolved population now becomes 
part of the Langmuir population). In addition, it must 
be assumed that this change must be instantaneous at 
the point of transition from absorption to desorption 
(which does not appear to be represented by a real-
istic physical phenomenon). The explanation for this 
behaviour assumes that the hole population increases 
with the concentration of sorbate molecules. For this 
to occur, there must be sufficient free volume for the 
polymer chains to move and allow for diffusion of the 
sorbate molecule. Furthermore, when the polymer 
relaxes back to the original configuration, this then 
prevents the penetrant molecule from diffusing back 
to its original position. The diffusing molecule is effec-
tively ‘trapped’ in the new site that has been created, 
with a large energy barrier preventing further move-
ment [89]. Based upon this modification of the dual-
mode model, the Tg represents the point at which the 
last hole is created as the temperature is reduced until 
the structure is ‘frozen’ [90].

The ability of sorbed water molecules to act as a 
plasticiser for glassy polymer networks and to increase 
the free volume (thereby facilitating polymer recon-
figuration) has been widely discussed [91–96]. In free 
volume models, diffusion of low molecular weight 
penetrants into amorphous polymers above Tg is 
considered to take place by the hopping of the pene-
trant molecules into free-volume nanopores which are 
formed by random thermal fluctuations of the matrix 

molecules [97, 98], as the MC increases, this ‘stop/go’ 
motion is facilitated [99]. Below Tg, rearrangement of 
the polymer networks requires cooperative relaxation 
processes [29, 100, 101] and as the temperature of the 
polymer is reduced, the size of the domain of coopera-
tion increases, reducing the likelihood of reconfigura-
tion events. However, the presence of water molecules 
acting as a plasticiser within the matrix creates free 
volume, which facilitates rearrangement of the poly-
mers and consequently reduces the Tg of the system. 
The rate of diffusion of water in the nanopores of the 
gel is affected by the connectivity or tortuosity of 
the network [68, 102], depends on the MC [103] and 
decreases as free volume decreases [104]. However, 
this porosity network is dynamic, rather than fixed as 
it would be in an inert material with concepts such as 
tortuosity giving the misleading impression that inter-
connectivity between nanopores is persistent.

Transport of sorbate molecules through the 
dynamic nanoporous network within the matrix is 
therefore dependent upon molecular mobility of the 
matrix. Where the sorption behaviour is dominated 
by bulk diffusion, the principal model that has been 
used to describe sorption kinetics has been based upon 
Fickian diffusion. However, for materials that exhibit 
sorption-induced dimensional changes, it has been 
long realized that a simple Fickian diffusion model 
is inadequate to describe sorption kinetics; applying 
particularly to glassy polymer/penetrant systems, 
where deviations from Fickian behaviour are com-
monly noted [105]. This has led to the development 
of alternative models where the kinetics is defined as 
being relaxation limited and is dominated by the rela-
tively slow viscous relaxation of the polymer matrix 
[106]. Models of this type consider the dimensions 
of the penetrant molecules, the interactions between 
penetrant and polymer (solvation) and the creation of 
free volume within the polymer matrix. Because of the 
dramatic change in behaviour observed with glassy 
polymers, the effect of penetrant molecules upon the 
Tg is of major importance [84, 107, 108].

Hydrogels

Hydrogels are three-dimensional crosslinked hydro-
philic polymeric materials, which can absorb large 
amounts of water, with associated swelling of the 
structure, but without dissolution. Hydrogels consist 
of a region where crosslinking occurs between sec-
tions where there is high polymer chain mobility, plus 
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chemical groups that interact with water molecules 
[109]. The sorption behaviour of non-ionic hydrogels 
is controlled by factors that control the swelling of the 
network structure, namely:

•	 The hydrophilic properties of the polymer chain 
which affect the polymer-water mixing and the 
swelling of the network (represented by the F–H 
interaction parameter).

•	 The elastic response of the crosslinked network 
(entropic in nature), which counteracts the swell-
ing.

Although crosslinking can be achieved through the 
formation of non-covalently-bonded regions (known 
as physical hydrogels), these may not be stable when 
subjected to mechanical forces, and covalent linkages 
are usually required to ensure long-term stability, 
although metal ion-complexed crosslinks are usually 
hydrolytically-stable under neutral conditions [110]. 
A higher crosslink density results in an increase in 
mechanical strength and modulus, but a decrease in 
the degree of swelling and rate of diffusion of water 
molecules through the polymer network [20, 111–115]. 
The amount of water that hydrogels can hold is a func-
tion of the crosslink density and stability within the 
polymer network, as well as the nature of the hydro-
philic groups on the polymer backbones [23].

The dipole–dipole interaction between the water 
molecules and the polymer network creates an 
osmotic pressure within the matrix that results in 
swelling when the hydrogel is exposed to water. When 
a hydrogel is exposed to moisture, it will exchange 
water molecules with its environment until it reaches 
an EMC; where there is a balance between the elastic 
strain stored in the polymer matrix and the osmotic 
pressure [116, 117]. The sorption process is viewed as 
not being one of molecules attaching to sorption sites 
on a surface (internal, or external), but rather analo-
gous to a process of dissolution of the polymer chains.

Natural hydrogels are based upon polysaccha-
rides (e.g. cellulose, starch, gels, carrageenan, algi-
nates, dextran, pullulans, chitosan, chitin) [118], pro-
teins [119–124] and polyphenols (e.g. lignin) [109, 
125]. The most commonly used polymers for syn-
thetic hydrogels are poly(vinyl alcohol), poly(lactic 
acid), poly(ethylene glycol|), poly(ethylene 
oxide),  poly(acylic  acid),  poly(arylamide), 
poly(vinylpyrrolidone) and poly(caprolactone) [23]. 
This group of materials also includes nanocomposite 

hydrogels, which comprise inorganic and organic 
components, such as exfoliated clay platelets dis-
persed in a hydrogel matrix [126].

The swelling kinetics is either diffusion-limited or 
relaxation-limited. In the first case, the diffusion of 
water molecules through the polymer matrix occurs 
at a much faster rate than the relaxation of the poly-
mer chains, and the rate of swelling is controlled by 
the concentration gradient. In the latter case, the rate 
of penetration of the water molecules is controlled by 
the relaxation of the polymer network.

A development of the F–H model is the Flory–Reh-
ner (F–R) theory that describes the swelling behav-
iour of gel networks [116, 127]. The swelling of the 
polymer network is determined by the elastic energy 
of the polymer chains and a mixing function that 
is determined by the interaction between the water 
molecules and the polymer network (and hence the 
interaction parameter described earlier). The free 
energy of the hydrogel can therefore be expressed as:

 where ΔGgel represents the contribution of the elastic 
strain energy and ΔGmix is the energy of mixing.

However, F–R theory does not completely 
describe the swelling behaviour of gels, and vari-
ous modifications have therefore been proposed 
[128]. Furthermore, the F–H/F–R models are only 
able to describe the sorption behaviour of polymer 
solvent systems in the rubbery state (above the Tg). 
One characteristic of the sorption isotherm of glassy 
polymers is the presence of a pronounced ‘shoulder’ 
at low sorbate concentrations, which is not predicted 
by F–H theory. Attempts have been made to model 
this behaviour by making the interaction parameter 
(χ) adjustable, but such an approach is not really 
satisfactory, since it reduces χ to an arbitrary fitting 
parameter rather than a well-defined constant [38].

Many gels exhibit a sigmoidal isotherm curve 
(IUPAC Type II), for which a modification of the 
F–H/F–R model is required. One approach is to 
combine the F–H model with a polymer structural 
relaxation model [129]. Water molecules entering the 
polymer network can result in a plasticising effect, 
resulting in non-ideal volumetric changes. The result 
is that there is an additional free energy change 
beyond that predicted by the F–H model. Different 
models attempted to take account of this behaviour 
and explain the observed Type II isotherm by taking 

(5)ΔG = ΔG
gel

+ ΔG
mix
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account of the free volume created by the sorbate 
molecules [33, 35, 130].

These free volume methods take account of the 
polymer being in a glassy state, which however is 
not an equilibrium state and, in principle, classi-
cal thermodynamic-based theories of sorption are 
not applicable [131]. However, it has been shown 
that free volume theories do have a physical basis, 
because the excess sorption found in the glassy state 
is related to the elastic energy stored in the polymer 
network [132]. During the process of absorption, the 
polymer network swells to accommodate the pen-
etrant molecules resulting in changes in the configu-
ration of the polymer network, which is stored as 
strain energy. This is an entropic property, since the 
configuration of the polymers has changed as a result 
of the presence of the penetrant molecules. The equi-
librium point is reached when the energy of mixing 
and the elastic strain energy are balanced [133].

The properties of water absorbed in hydrogels are 
determined by the polymer–water interactions and by 
the geometry of the nanopores in the 3D structure. 
Different water states have been claimed to exist in 
hydrogels—‘bound’ water associated with sorption 
sites, ‘intermediate’ water and ‘free’ water with no 
specific association with the polymer chains [65, 134]. 
Molecular dynamic studies of hydrogels have shown 
that the structure of water is significantly modified in 
the region of the polymer chains [135]. Calorimetric 
measurements in a hydrogel of poly(2-hydroxyethyl-
methacrylate) indicate that water undergoes a glass to 
liquid transition in two stages, which was interpreted 
as water interacting with either the hydrophobic or 
hydrophilic segments of the polymer chains [136].

The interaction of moisture with wood 
and other lignocellulosic materials

The molecular components of plant cell wall 
lignocellulosic materials and their interaction 
with moisture

This subject area has been extensively covered in 
numerous reviews, e.g. [137–141], and only a brief 
introduction is included here, giving a generalized 
description. Lignification occurs in various plant 
cell types (tracheary elements, schlerenchyma cells, 
endodermal cells, seed coat cells and siliques cells) 
and can occur as a natural part of cell development 

or in response to biotic or abiotic stresses [142]. The 
discussion that follows and the main subject of the 
review is concerned with the tracheary elements, with 
an emphasis on wood products.

The properties of wood and other lignocellulosic 
materials are derived from the behaviour of the con-
stituent molecules, and this behaviour is strongly 
influenced by the presence of water [143–146]. The 
influence that water has upon the molecular dynam-
ics of the cell wall matrix molecules (lignin-hemicel-
lulose) is particularly important. The cell wall of lig-
nocellulosic materials comprises long thin microfibrils 
of crystalline cellulose embedded within a matrix of 
hemicelluloses in combination with lignin (Fig. 3). The 
structure and composition of the lignin and hemicel-
luloses vary within and between plant species with 
some plant fibres (e.g. cotton) being essentially lignin-
free [147]. The majority of the OH content is associ-
ated with the polysaccharidic components of the cell 
wall. However, although the cellulose component has 
a high OH/C ratio, only a proportion of this OH con-
tent is accessible to water molecules, with the remain-
der being inaccessible because it is located in crys-
talline regions within the core of the microfibril [57, 
148–154]. Because of the extended crystalline structure 
and extensive hydrogen bonding network within the 
microfibrils, they are very strong and stiff [155–161]. 
Since the interior of the microfibrils is not accessible 
to water molecules, they remain largely unaffected 
by the presence of moisture in the cell wall, although 
it has been shown that the crystalline lattice of cel-
lulose is changed by the absorption and desorption 
of water [162, 163]. This observation has been attrib-
uted as being due to external pressure applied by the 
surrounding matrix material upon cell wall hydration 
[164]. However, Paajanen et al. [165] noted that that 
the crystalline lattice expands in the [200] direction 
(and becomes distorted) in the dry state due to interac-
tion with the neighbouring fibrils and the matrix poly-
saccharides. In the swollen state, the cellulose crystals 
can adopt a higher degree of order with a smaller lat-
tice spacing in the [200] direction. There therefore is 
no need to explain this phenomenon by invoking a 
swelling pressure and MD models produced the cor-
rect results without any restriction of swelling at high 
MC. It is difficult to treat each cell wall component in 
isolation, for example when determining properties, 
such as elastic modulus, although values for cellulose 
have been reported in the literature [166, 167].
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By contrast with the cellulose, the hemicellulosic 
components have a lower crystalline content and con-
sequently contain a much higher proportion of acces-
sible OH content [168–171]. The lignin is an amor-
phous three-dimensional network polymer comprised 
of phenolic building blocks that has a much lower 
OH/C ratio compared with the polysaccharide content 
[172–174]. Simplistically, the structure of the cell wall 
can be viewed as similar to a fibre-reinforced compos-
ite, with the cellulose microfibrils being the reinforc-
ing element, the lignin the matrix material, and the 
hemicelluloses acting as an interfacial coupling agent 
[139]. Reliably measuring the softening point of lignin 
and hemicellulose is extremely difficult, and although 
values of Tg for these components have been reported, 
these are expected to be different when determined 
in situ, rather than when determined for the isolated 
molecular species [166, 175–179]. There is not a single 
well-defined glass transition temperature of wood, 
due to its complex composition and structure, and this 
makes application of models invoking a relationship 
between sorption properties and Tg problematical 
[36]. A useful approach in this context is to study the 
same species but use genetic manipulation to change 
one of the molecular components and study the result-
ing change in properties. For example, a study of the 
effect of different lignin types on the thermal softening 
of transgenic aspen showed that a reduction in lignin 

content reduced the softening temperature, but that 
changing the syringyl/guaiacyl ratio did not affect the 
Tg [180].

The presence of water in the enveloping hemicel-
lulose-lignin matrix has a significant influence upon 
molecular motion of the matrix molecules in a man-
ner analogous to a water-gel polymeric network [181]. 
When dry wood absorbs moisture, this causes the 
structure to swell and if restraint is placed upon the 
wood sample, then a swelling pressure is generated. 
The absorption of water into the cell wall results in 
swelling of the cell wall matrix which creates addi-
tional void volume [182, 183], resulting in an increase 
in the spacing between adjacent microfibrils [184]. 
However, it must be noted that wood in its native 
(never-dried) state is already saturated with water and 
that macroscopic stresses arise when the wood is dried 
from this native state to a MC below the fibre satu-
ration point [185]. These macroscopic strains can be 
annealed out by re-wetting the wood (often with the 
application of heat). These macroscopic stresses are 
not the same as the micromechanical stresses that arise 
in the macromolecular matrix when water molecules 
enter the structure giving rise to stored elastic strain 
energy which is released when water leaves the cell 
wall. The amount of water that is contained within the 
cell wall is determined by the thermodynamics of the 
system. When the bound water chemical potential is 

Figure 3   A diagram showing the location of the cell wall within 
the wood structure and illustrating the different cell wall levels 
with a microscopic view of the microfibrils embedded within a 
matrix (composed of lignin and hemicelluloses) (a). In b, the 
effect of the presence of sorbed water molecules in the inter-

microfibrillar matrix results in the expansion of the matrix 
(leaving the microfibrils unaffected). In the upper part of (b), 
the microfibrils are oriented in a longitudinal direction and this 
results in expansion in the transverse direction only.
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in equilibrium with the free water chemical potential, 
then a state of equilibrium is realized [186]. A recent 
paper has presented an alternative view of the interac-
tion of water with wood and other semi-rigid swelling 
materials [187]. In this model, internal conformational 
strain is stored in the structure during the drying, 
with the swelling of the materials having an enthalpic 
origin. It is further pointed out in this paper that the 
relationship between the temperature-dependent iso-
therm, heat of swelling and swelling pressure/work of 
swelling is incompletely understood and needs further 
experimental investigation.

In terms of molecular mobility, the hemicelluloses 
are the component most affected by the presence of 
water in the cell wall; because the cellulose is con-
strained by extensive hydrogen bonding networks 
and the lignin by extensive crosslinking [139, 166, 
188–195]. The interface between the surface of the cel-
lulose microfibril and the hemicellulosic component 
has an important role to play when considering the 
properties of lignocellulosic materials under load in 
the presence of moisture [196, 197].

As a result of the presence of essentially hygro-
inert microfibril elements embedded within a 
dynamic matrix, the orientation of the microfibrils 
gives rise to anisotropic behaviour. For example, the 
microfibril angle within the S-2 layer of the wood 
cell wall affects the swelling behaviour of the wood 
at a macroscopic level. In most types of wood, the 
microfibrillar winding angle is typically 10–30° rela-
tive to the longitudinal axis of the cell wall, which 
results in swelling in the transverse orientation being 
greater than in the longitudinal direction. In certain 
types of wood (such as compression wood in gymno-
sperms or juvenile wood), higher winding axes result 
in much greater transverse swelling [198, 199]. This 
is shown in Fig. 3.

However, usually the microfibrils are oriented at a 
finite angle to the longitudinal cell axis, which results 
in some expansion in the longitudinal as well as the 
transverse direction. This property is determined by 
the magnitude of the microfibril angle (Fig. 3).

An interesting approach to furthering under-
standing the interactions of moisture with lignocel-
lulosic materials is to use molecular modelling [200]. 
For example, a study of the molecular dynamics of 
biopolymers considered the effect of moisture and 
heat upon the hygric swelling, thermal expansion 
and mechanical properties of lignin [201]. This study 

investigated an uncondensed lignin (a linear poly-
mer) with a degree of polymerisation (DP) of 100 
and consisting of five chains, as a model for the con-
densed (crosslinked) lignin found in the cell wall of 
plants. Water molecules were inserted into the model 
and effect on molecular dynamics investigated. A 
molecular modelling study which included all of 
the cell wall components found that the hygrome-
chanical behaviour of the cell wall composite was 
not much affected by the lignin, which was found 
to be largely hydration independent [202]. The main 
problem with such an approach is the complexity of 
the molecular arrangements in the cell wall which 
requires simplification for the models to work. Fur-
thermore, the exact molecular arrangements are not 
known, so when creating the models, it is necessary 
to base these on limited experimental evidence. The 
challenge is not to simplify to the point where the 
model no longer offers useful insights.

The sorption isotherm

The relationship of wood and other cellulosic materi-
als with water vapour has been extensively studied for 
more than a century, yet remains incompletely under-
stood. Before proceeding further, it is important to dis-
tinguish the difference between an isotherm obtained 
with previously-dried, compared to desorption of 
water-saturated lignocellulosic material (Fig. 4). It was 
originally thought that the boundary curve followed 
in the first desorption cycle from the ‘green’ state was 
unique and that subsequent desorption cycles would 
follow a different path. However, this has been shown 
to be erroneous and that subsequent desorption cycles 
will rejoin this boundary curve, although the exact 
behaviour depends strongly on the drying conditions 
employed after the first desorption cycle [203]. The 
isotherms discussed in this paper exclusively refer to 
the sorption behaviour of lignocellulosic material that 
has been previously-dried. The sorption isotherm of 
lignocellulosic materials is a characteristic sigmoidal 
IUPAC Type II curve exhibiting hysteresis between 
the absorption and desorption isotherm branches 
[204–210]. The properties of the desorption isotherm 
depend upon the point at which desorption is initiated 
and whether it is a scanning or boundary desorption 
isotherm curve [211, 212].

There are many sorption models that have been 
applied to experimental sorption isotherms of hygro-
responsive natural materials. Models which treat the 
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substrate as an inert porous material, with a defined 
internal surface are not appropriate [2, 204], but none-
theless have been extensively applied to sorption 
isotherms of wood and many other natural materi-
als, foodstuffs, etc. [2, 3]. In models of this type, the 
internal surface area and monolayer versus multi-
layer coverage are parameters of interest but have no 
physical meaning when applied to dynamic systems. 
Many of these static material models either consider 
the substrate as a planar surface or an inert porous 
material, but take no account of the changes in dimen-
sion occurring when the material interacts with mois-
ture. In the static pore models, hysteresis arises from 
consideration of mechanisms of pore filling and pore 
emptying, which is applicable to inert porous, but not 
hygro-responsive lignocellulosic or cellulosic materi-
als. Although inert substrate models can apparently 
reproduce the experimental data, they do not provide 
any insights into the physical nature of sorption and 
desorption of natural materials (such as wood and 
plant fibres) that exhibit dimensional changes as a 
result. They certainly provide no information regard-
ing how the mechanical properties are changed by the 
presence of moisture.

At a given temperature, a sample of wood will 
absorb or desorb water until it reaches a state of 
equilibrium, which can take a considerable amount 
of time, even for small (mg) samples [214, 215]. The 
equilibrium MC represents the point at which the 
MC at a particular RH remains constant and where 
the rates of absorption or desorption are the same 
[216]. Establishing these points experimentally 
can be very time-consuming and usually involves 
the setting of a weight change criterion to establish 
an approximate ‘equilibrium’ point. This usually 

involves a decision where the weight change over 
a period of time is no more than a small percentage 
of the ‘true equilibrium’ value [3]. This can be a par-
ticular problem with using dynamic sorption equip-
ment if only one sample is tested per sorption run, 
since the weight change criteria necessary to estab-
lish an ‘equilibrium’ value can lead to extremely long 
time periods (months) being required to establish 
one isotherm. In addition, it is recommended that a 
minimum of two and preferably three isotherm runs 
be performed on the same sample consecutively in 
order to establish reproducibility of the data [217]. 
Furthermore, several samples of the same material 
should also be measured to establish reproducibility. 
This makes production of isotherm data logistically 
impractical with single sample devices. Glass et al. 
[214] have identified slow sorption processes with 
characteristic times of the order of 500–2000 min that 
can only be identified if hold times of the order of 
24–50 h are used for each RH step. The question of 
whether the more logistically practical equilibrium 
criteria can be used in comparative studies remains 
open.

However, even when great care is taken to establish 
the EMC, this state is not considered a true thermody-
namic equilibrium because there is hysteresis between 
the absorption and desorption branches. This does not 
mean that a ‘true’ equilibrium would be established if 
the experiment was run for a sufficient length of time, 
since the differences between the absorption and des-
orption branches of the isotherm are not related to 
the time of exposure in the experiment. Most sorption 
isotherms are recorded up to a RH of 95% since there 
is an increasing likelihood of capillary condensation 
of water within the macropore structure of the cell 

Figure 4   Sorption isotherm 
showing the first desorption 
from the water-saturated 
state and subsequent sorption 
cycles (lhs) and absolute hys-
teresis for these two cycles 
(adapted from [211]).
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wall and difficulties in maintaining an accurate sta-
ble RH much above 95% RH [211]. There have been 
attempts to project the absorption isotherm curve up 
to a value of 100% RH and use this cross-over point to 
estimate a fibre saturation point (FSP). This point may, 
or may not, coincide with a region where there is a 
change in physical wood properties with cell wall MC 
[218–220]. Thybring et al. point out that FSP (deter-
mined by changes in wood properties with cell wall 
MC) should not be confused with maximum cell wall 
MC, for which values depend upon the measurement 
method employed [70].

Sorption hysteresis

Sorption hysteresis is the property where the sorp-
tion behaviour of the material is different, depending 
upon whether the MC is increasing or decreasing. For 
the purposes of this review, only hysteresis within 
the hygroscopic range (from 0% to approximately 
98% RH) is considered here [211, 213]. Water sorption 
within the hygroscopic range occurs in the cell wall, 
and sorption behaviour is linked to the mechanical 
response of the cell wall (and hence macromolecular 
dynamics). Although universally observed in the sorp-
tion isotherms of lignocellulosic materials (as well as 
other hygro-responsive materials), there is still much 
discussion regarding the origins of hysteresis. Some 
general observations are here made about sorption 
hysteresis in lignocellulosic materials:

•	 Sorption hysteresis is generally determined by sub-
tracting the absorption EMC from the desorption 
EMC at the same RH value—this is referred to as 
absolute hysteresis (simply referred to as hysteresis 
in this review) (Fig. 4). An alternative approach is 
to divide the desorption EMC by the absorption 
EMC to provide the hysteresis ratio – not referred 
to any further in this paper.

•	 Empirical observations have shown that the abso-
lute hysteresis is dependent upon the lignin con-
tent of the sample—with materials having a larger 
lignin content displaying a higher hysteresis value 
[221].

•	 Thermally modified wood shows a lower level of 
moisture uptake throughout the isotherm overall, 
but the hysteresis is greater than that observed with 
unmodified wood of the same species [139, 222]. 
However, this only applies to the first sorption 

cycle; in subsequent cycles, the sorption hysteresis 
is considerably reduced. This behaviour has been 
attributed to changes in cell wall mechanical prop-
erties.

•	 The area bounded by the sorption hysteresis loop 
decreases as the isotherm temperature is raised 
[221, 223–227].

•	 Sorption hysteresis is history dependent, with the 
previous sorption history of the sample affecting 
the behaviour [49, 204, 217, 228, 229].

Early attempts to explain sorption hysteresis were 
based upon models that assumed that the availability 
of sorption sites was different during absorption and 
desorption cycles [230] or by considering the sorption 
behaviour of porous materials [231]. Models of this 
type treat the cell wall substance as an essentially inert 
porous material with hysteresis explained by consid-
ering the physics of pore filling and emptying [221]. 
This model considers both film-forming in pores, 
which does not exhibit hysteretic behaviour and cap-
illary condensation, which does. Independent domain 
theory has been applied to this underlying theory to 
model a series of scanning desorption curves, which 
can, in turn, be used to create a desorption boundary 
curve [232–236]. The modified Mualem model [237] is 
a simplification of the independent domain model in 
which no interaction between pores is considered and 
where the adsorption and desorption of the pore sys-
tem are only determined by the pore necks and pore 
bodies. This model requires the use of an adjustable 
parameter which is determined from a selected cali-
bration point on the desorption curve, with good fits to 
the desorption curve obtained using this process [237]. 
However, the use of models which treat the cell wall 
as a static porous network do not offer useful insights 
into the behaviour of dynamic swelling systems, even 
less so if the model relies on arbitrary fitting param-
eters. The independent domain model can be applied 
to populations of sorption sites [235], but the details 
of the interaction of water with these sites are not con-
sidered in the model. The model is concerned with 
the interaction of a material with a sorbate where the 
sorption steps are finite, with the sorption sites being 
in one of two possible states [238, 239]. An alternative 
approach is to model the number of excess absorption 
sites which are postulated to exist during the desorp-
tion process [240]. Why extra sites would be generated 
at the instant of desorption is hard to explain through 
any known physical process (similar to the problem 
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with applying the dual-mode model). Invoking the 
state or number of sorption sites as an explanation 
of hysteresis also does not provide insights into the 
links with dynamic swelling behaviour and molecular 
motion within the cell wall. In an interesting devel-
opment, the relationship between swelling behaviour 
and sorption hysteresis was explored, in particular by 
examining differences in hydrogen bond networks 
formed during absorption and desorption cycles of 
the isotherm [241]. This model was further refined to 
include the effect of cellulose nanocrystal elements 
embedded within an amorphous matrix, the presence 
of which limited the swelling of the matrix, leading to 
a reduction in sorption and hysteresis [242], a result 
that has been experimentally observed [243].

There is a considerable body of evidence indicating 
that sorption hysteresis in hygro-responsive materials 
has to be linked in some way to the molecular mobil-
ity behaviour of the cell wall polymer network and 
this approach has been used to explain hysteresis in 
various water–polymer systems [41, 221, 225, 243–247]. 
According to many such models, the phenomenon of 
hysteresis is observed in glassy polymers, where the 
response of the polymer matrix to the ingress or egress 
of sorbate molecules is not instantaneous, but limited, 
due to a lack of void volume resulting in a restric-
tion in molecular motion. This results in the matrix 
being in different configurations during absorption 
and desorption. Plasticization of the matrix by sorb-
ate molecules will lead to a reduction in hysteresis, as 
will an increase in isotherm temperature. According to 
such a model, a collapse of sorption hysteresis will be 
observed when the Tg of the matrix is exceeded. The 
idea that hysteresis is linked to plastic deformation of 
the cell wall, which can be considered an analogue of 
a gel-like polymer system, is certainly not new and 
was first proposed by Barkas as far back as the 1930s 
[45, 183, 248–251].

Noting that dry, native cellulose decomposes before 
reaching its Tg [252], Salmén and Larsson used a mod-
ified cellulose polymer which exhibited a moisture-
induced softening within the temperature range of 
20–65°C [225]. By studying this material using humid-
ity scanning dynamic mechanical analysis (DMA) 
and conducting sorption experiments, at different 
temperatures, they were able to determine the rela-
tionship between Tg and hysteresis of the isothermal 
sorption loops. This work showed that there was such 
a relationship and, furthermore, that sorption hyster-
esis vanished above the glass transition temperature, 

in agreement with previous work reported for glu-
comannan [243] and more recently for other water-
polymer systems [41, 245]. This explanation for hyster-
esis is able to explain the disappearance of hysteresis 
above Tg, or where the moisture levels are sufficient to 
change the state of the polymer network from glassy to 
rubbery, but there are examples of cellulosic systems 
where the hysteresis is mainly in the higher part of 
the hygroscopic range, but essentially absent at lower 
moisture contents [253, 254]. It is well known that the 
sorption behaviour of lignocellulosic materials is influ-
enced by the previous sorption history of the material, 
and it is for this reason that the ‘gripped-box’ model 
was introduced to describe sorption hysteresis [228]; 
however, this model is empirical and does not relate to 
any of the physical properties of the material. It should 
be noted that at very high levels of relative humidity 
(above 95%), an additional hysteresis phenomenon is 
observed, which has been thoroughly discussed else-
where [213, 255] and will not be considered further in 
this review.

Sorption sites

The primary sorption sites in wood are the OH groups 
associated with the cell wall polymers (cellulose, hemi-
cellulose and lignin), plus some ionic groups [26]. The 
main method for determining the concentration of 
accessible OH groups in wood and cellulosic materi-
als is to use deuterium (2H, or D) exchange with D2O; 
a subject that has been thoroughly reviewed [204, 256]. 
Dynamic vapour sorption (DVS) equipment of various 
types has proven to be very useful for these deuterium 
exchange experiments, but it is essential to use the cor-
rect protocols in order to obtain reliable results [48]. 
By the use of such studies in wood samples, it has 
been found that accessible OH content is not affected 
by the MC of the sample, but that there was a low 
concentration of OD groups persisting after deuterium 
exchange and subsequent re-protonation [257]. This 
latter observation is probably linked to the existence 
of both fast and slow exchange processes. The slower 
process is affected by many experimental variables, 
such as sample geometry, deuteration conditions, RH 
and temperature; but the crystalline core of the micro-
fibrils remains resistant to these exchange processes 
[258]. In Fig. 5 below, a comparison of the number 
of water molecules per OH group (‘sorption site’) is 
shown, based upon the Z–L model, or based upon the 
assumption that there are 9 mmol of accessible OH 
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groups per gram of dry wood material. Also shown 
is an isotherm from which these data were derived. 
It can be seen that the number of water molecules per 
accessible OH group or mean cluster size does not 
exceed 2 water molecules even at 95% RH.

Water in the cell wall of lignocellulosic materials 
is usually considered to either be directly hydrogen 
bonded to the primary sorption sites or hydrogen 
bonded to other water molecules and is thus consid-
ered to form two populations within the cell wall. 
This idea was supported by the observation in DSC 
scans that there were both freezing and non-freezing 
water populations. However, as was noted earlier in 
this review with previous work on polysaccharide gels 
[27], it has been shown that the presence of freezing 
and non-freezing water in the wood cell wall is not 
necessarily due to distinct water populations but may 
be an experimental artefact [204, 259]. Experimental 
techniques, such as NMR and inelastic neutron scat-
tering, have been used as evidence for identifying dif-
ferent water populations, as is discussed later. There 
has been some analysis of water clustering in the wood 
cell wall using the Z–L model [260–269]; which could 
possibly be interpreted in terms of different water 
populations (i.e. directly H-bonded to polymeric 
OH groups and indirectly-bonded via an intermedi-
ary water molecule), but the applicability of the Z–L 
model for such purposes is questionable. The issue of 
whether water tends to form clusters around sorption 
sites or is more evenly distributed is an important one 
and continues to elicit interest [6, 260, 261, 263, 266, 

270, 271]. Even if such separate populations do exist, 
it is possible that the dynamics of exchange between 
these populations is over such short time scales that 
they cannot be resolved.

Various estimates can be found for the total acces-
sible OH content of wood samples, and it is essential 
to be aware that some experiments are compromised 
because of the application of inappropriate experimen-
tal protocols, but values in the region of 8.5–9.5 mmol 
g−1 appear to be representative [257, 272]. Various esti-
mates can be made for the saturation level of water 
in the wood cell wall, which typically varies between 
20–50% by mass, depending upon the method used 
for measurement (higher values have been reported) 
[70]. These data allow for a very crude estimation of 
the number of water molecules per polymeric OH site 
in wood (between 1.2 and 3.3 water molecules per OH 
group at cell wall saturation): Berthold et al. estimated 
this to be 1–2 water molecules per OH site at 92% RH 
[26]. This is an average value and assumes an even 
distribution of water molecules throughout the matrix 
in the manner of a solvent. Obviously, as the MC of the 
cell wall reduces, so does the ratio of water molecules 
to accessible OH groups, with the possibility of water 
molecules bridging adjacent OH sites at lower MCs.

Hygro‑responsive behaviour

Dimensional changes occur in response to variation in 
the cell wall MC of the lignocellulosic material. With 
an increase in cell wall MC, swelling occurs in the 
lignin–hemicellulose matrix, resulting in an increase 
in the distance between the cellulose microfibrils [273, 
274] and some disaggregation of supramolecular 
microfibrillar structures [275], leading to macroscopic 
dimensional changes which are controlled by micro-
fibrillar orientation [167, 276, 277] and accompanied 
by an increase of the water diffusion coefficient in the 
surrounding matrix [165, 182, 274, 278]. These dimen-
sional changes in the cell wall couple to produce vis-
ible anisotropic changes in the shape of macroscopic 
specimens in a complex way [1, 186, 279, 280] mani-
fested as swelling/shrinking of the samples and the 
development of macroscopic stresses if the material is 
restrained [281–283]. The main cell wall layer that is 
associated with dimensional changes in wood is the 
S-2 layer, with the microfibrillar orientation of the S-2 
layer having a major influence on the anisotropy of 
swelling [284], although other cell wall layers and the 

Figure  5   A comparison of the sorption isotherm with mean 
cluster size (MCS, determined using the Zimm–Lundberg theory) 
and the ratio of sorbed water molecules divided by the accessible 
hydroxyl groups (H2O/OH) (assuming 9.0  mmol accessible OH 
groups per dry gram of wood).
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surrounding wood substance do influence this behav-
iour [285–287].

When attempting to model the interaction of 
moisture with swelling materials, such as wood, the 
molecular dynamics of the interfibrillar matrix in the 
presence of moisture must be considered [107]. If a 
gel model for the hygro-responsive behaviour of the 
cell wall is adopted, then the equilibrium established 
during absorption/desorption is linked to the elastic 
strain energy stored in the matrix and the relationship 
of this to the activity of the water at different RH levels 
[45]. However, the gel behaviour of the cell wall is, in 
reality, restricted to the hemicellulose/lignin matrix, 
and the global behaviour is better represented by con-
sideration of an inert reinforcement (the microfibrils) 
embedded within the matrix [288] and models for 
such composite morphologies have been developed 
[289]. The presence of moisture-inert reinforcing ele-
ments (microfibrils) within the hygro-dynamic gel-like 
matrix gives rise to anisotropic dimensional changes 
in response to changing RH [284]. Many other materi-
als in nature also employ a composite structure with 
fibres, rods or sheets embedded in a gel-like matrix to 
impart properties such as toughness or specific geo-
metrical changes [200].

In lignocellulosic materials, the mobility of the 
molecular chains of the lignin–hemicellulose matrix 
is an important factor that must be considered when 
modelling sorption and diffusion behaviour [107, 246, 
290] and, as noted, also applies to the phenomenon of 
hysteresis [221, 225, 243, 246, 291]. Although there is 
still much debate regarding the dynamic response of 
wood and other lignocellulosic materials to changes in 
RH of the surroundings, there does appear to be the 
development of a consensus that some sort of relaxa-
tion-limited model is the best approach [107].

It is very well known that the mechanical properties 
of wood change with variation in cell wall MC. There 
is a reduction in stiffness and strength, but an increase 
in toughness as the MC of the wood is raised [198, 292, 
293]. These properties change up to a nominal FSP but 
remain approximately constant thereafter; although 
this correlation is not as simple as is sometimes 
assumed [70, 294]. Carrington noted that the mechani-
cal properties of wood change at approximately 5% 
MC [295], an observation subsequently confirmed 
by others [296–298]. The reasons for this are not fully 
explained, but it is assumed that at lower cell wall 
MC, there is some disruption of H-bonding within 
the polymer network and that at higher cell wall MC 

plasticization of the polymer network occurs [299]. 
A recent review of the DMA literature has shown 
that there is distinct minimum in tan − δ at 5% MC in 
almost all studies for measurements in the longitu-
dinal direction [300]. That review is comprehensive, 
and the reader is directed to this reference for further 
analysis and discussion regarding the use of DMA for 
investigating the interaction of moisture with wood 
and the effect on dynamic mechanical behaviour. Use-
ful DMA experiments for studying the interaction of 
moisture with natural materials should vary the sur-
rounding RH and keep the temperature constant (as 
with isotherms). Unfortunately, DMA studies that 
only vary the temperature are of little to no value for 
understanding the hygro-dynamic behaviour of wood.

Mechanosorption is a term that is used to define the 
mechanical properties of a material when it is simul-
taneously exposed to atmospheric moisture and is 
concerned with the time-dependent properties. It is 
also observed that the sorption behaviour of wood is 
affected by any external mechanical forces that may be 
applied [301, 302]. It is generally assumed that mech-
anosorptive behaviour has two components. One is 
an instantaneous phenomenon which is linked to the 
mechanical response of wood during drying or wet-
ting when it is under load. The second is a delayed 
effect, which is referred to as mechanosorptive creep 
and which is accelerated under conditions of RH 
change [303–307]. It is known that wood and other lig-
nocellulosic materials, such as natural fibres [308], will 
exhibit creep when subjected to constant load and that 
creep is magnified if the load is applied under condi-
tions of changing RH [309, 310]. Partial creep recovery 
occurs if a wood sample is subject to a static load and 
then remoistened [311]. The mechanosorptive creep 
effect can result in premature failure of wood samples 
depending on the rate of loading [312]. It has been 
observed that the magnitude of deformation occurring 
due to mechanosorptive creep is dependent upon the 
rate at which the MC of the wood changes, with much 
larger deformations occurring in environments which 
exhibit corresponding rapid changes in RH [306]. Most 
studies of wood behaviour examine properties either 
under conditions of equilibrium or constant RH, but 
wood in service is subjected to fluctuating environ-
mental conditions, meaning that dynamic experiments 
are of great interest [223]. When water molecules enter 
the cell wall of wood, some of the hydrogen bonds 
associated with the matrix or matrix-microfibril inter-
face are broken and replaced by water-OH bonds, 
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resulting in a decrease in stiffness of the cell wall [196]. 
This is linked with a decrease in the energy barrier 
associated with the breaking and reforming of hydro-
gen bonds and facilitates viscoelastic creep under an 
external load. Mechanosorptive creep results in the so 
called ‘hygro-lock’ effect which occurs when wood is 
dried under load and which locks in distortion of the 
material. This can be reversed during a subsequent 
moistening period. It has be postulated that this per-
manent deformation effect is related to the ‘stick–slip’ 
mechanism of breaking and reforming of hydrogen 
bonding networks within the polymer structure [276, 
313–323]. This hydrogen bond breaking is facilitated 
by the presence of interstitial water between the sur-
face of the microfibrils and the matrix polymers in the 
hydrated cell wall [140].

Cell wall nanoporosity

The cell wall of wood is essentially non-porous in the 
dry state [324–328], in common with other lignified 
materials [329–332], but porosity is generated as water 
molecules enter the cell wall. This transient porosity 
evolves as the MC of the cell wall changes. It is prob-
lematical to image or measure this porosity, since 
many potential techniques require the samples to be 
dry [324]. Much of the earlier work used solute exclu-
sion to determine the accessible microporosity of the 
water-saturated cell wall [324]. More recently, dual-
axis electron tomography has been used to probe the 
architecture of the S-2 layer of the wood cell wall of 
never-dried Norway spruce at nanometre scale [333]. 
However, this experiment required mild-delignifi-
cation prior to heavy metal staining. This technique 
allowed for resolution of the cell wall polymers and 
the micropore geometry, the latter having diameters 
predominantly below 3 nm. It is not clear how repre-
sentative this geometry is of a water-saturated lignified 
cell wall, but diameters of this order are often reported 
using other techniques [324]. Another physical method 
to resolve cell wall microporosity uses silicon nano-
casts [334]. This technique involves the penetration of 
swollen wood samples with a silica sol–gel, followed 
by calcination in a furnace to remove all the organic 
material, producing a negative cast of the wood, which 
was then examined using scanning electron micros-
copy and nitrogen sorption. Techniques of this type 
can be used to prove the existence of cell wall nanopo-
res but cannot give information about pore dynamics.

A variety of techniques have been applied to inves-
tigating the nanoporosity of the cell wall, including: 
atomic force microscopy [335], NMR [336, 337], neu-
tron scattering [338], fluorescent probes [339], nitro-
gen sorption [340], krypton sorption [326] and solute 
exclusion [341]. Thermoporosimetry is based on the 
observation that water-saturated porous materials 
(e.g. wood, pulp fibres) contain both freezing and non-
freezing water, with the latter thought to be associated 
with water located in the cell wall nanopores [68]. This 
has led to the development of isothermal measure-
ment methods to determine the amounts of freezing 
and non-freezing water in cellulosic samples [342]. 
However, differential scanning thermoporosimetry is 
claimed to give a more accurate measurement of pore 
size distribution compared to isothermal methods [71]. 
Note earlier comments regarding the interpretation of 
freezing and non-freezing water.

Sorption kinetics

The rate at which lignocellulosic materials take up, or 
lose, moisture depends on a range of factors:

•	 Sample size—it is self-evident that the surface of 
the sample being directly exposed to the atmos-
phere will respond much faster to changes in RH 
compared to the interior of the sample [343]. How-
ever, even with small samples, moisture transport 
must be considered [344, 345].

•	 Orientation of the sample—in thin samples, the ori-
entation of the sample is important and affects the 
sorption kinetics [344].

•	 Temperature—increased temperature leads to a 
higher rate of penetration of the water molecules 
in the sample.

•	 Concentration gradient—the rate at which the sam-
ple changes mass depends upon the difference in 
concentration between the penetrant in the sample 
and in the surrounding environment.

The issue with any sorption kinetic experiments 
of lignocellulosic materials has been obtaining suffi-
ciently accurate data to allow for the fitting of robust 
sorption models. An example of the problems encoun-
tered is illustrated by the debate regarding the use of 
curve fitting to data obtained using DVS. Early work 
on the use of curve-fitting software in combination 
with DVS data for flax fibres showed that the experi-
mental data were well described by using a model 
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having two exponential relaxation terms (the paral-
lel exponential kinetics, PEK model) [346]. Unfortu-
nately, the data obtained from the DVS are compro-
mised by the finite time that it takes the instrument to 
step change from one RH value to another and with 
potential stability problems of the balance over long 
experimental time periods [216]. Furthermore, the 
arbitrary setting of ‘equilibrium’ criteria has a pro-
found effect upon the parameters obtained from the 
curve fits to the double exponential model [347]. Curve 
fitting is highly sensitive to these factors. Rather than 
attempting to fit the sorption data to a pre-conceived 
model, an alternative approach is to fit the experimen-
tal points using a model that comprises a spectrum of 
exponential functions [216, 347], as is done for low-
field NMR relaxometry experiments [348]. In this way, 
no a priori assumptions are made regarding the num-
ber of decay functions present, and more robust fitting 
to the data is to be expected. Unfortunately, the data 
quality is severely compromised by the aforemen-
tioned finite time period taken to change from one 
RH state to another, unlike the experimental condi-
tions pertaining in the low-field NMR experiments, 
where the magnetic field is essentially instantaneously 
removed, allowing for unambiguous recording of the 
decay events [349]. The reliability of the experimen-
tal data is not of sufficient quality to allow for unam-
biguous repeatable parameters to be obtained in any 
curve-fitting exercise. This will apply to any kinetic 
experiment involving a change in RH in a chamber 
containing a sample of finite size, since the change 
cannot be instantaneous and the results will in any 
case also be strongly influenced by sample size/geom-
etry. Whether these issues are resolvable, it remains 
to be seen.

Biomimetic hygro‑responsive materials

The purpose of a moisture-activated material is to 
convert the chemical potential energy in atmospheric 
water vapour into mechanical work [350]. This is an 
area which has received a tremendous amount of 
research attention over the past decade and been the 
subject of numerous reviews. Humidity-responsive 
behaviour is widely encountered in nature, with 
examples such a pine cone flakes and wheat awns, 
often quoted as examples [162, 277, 351–356]. Based 
upon these observations, there has been much inter-
est in developing bespoke hygro-responsive materials 

using biomimetic principles, with the response fine-
tuned by the combination of materials which have dif-
ferent moisture-responsive properties [354, 357–365]. 
There have also been moisture-activated actuators 
constructed using natural fibres [366, 367], cellulose 
[354, 357, 368, 369] and lignin [370].

Homogeneous hydrogel materials expand isotropi-
cally when exposed to moisture, whereas in bilayer 
hygro-responsive materials, one of the layers (the 
active layer) changes its volume reversibly or irre-
versibly when exposed to moisture, whereas the other 
layer (the passive layer) does not respond. On expo-
sure to moisture, a strain is developed at the interface 
between the two layers (called the activation strain), 
which results in deformation of the material. A strong 
bond is required at the interface of the two materials 
to prevent delamination, and the passive layer needs 
to be flexible to allow for deformation to occur. Apart 
from a simple bilayer structure, it is also possible to 
produce patterned hydrogel materials which allow 
for programmable deformation [371]. One method to 
obtain patterned structures is to use photolithography 
to control crosslink density in one of the polymer lay-
ers. The extent of swelling in the presence of water is 
reduced as the crosslink density increases. In addition 
to using bilayer approaches to producing deformable 
materials, it is possible to use a single homogeneous 
gel in which the properties are tuned, for example by 
controlling the crosslink density, polymer composi-
tion or some other material property [372]. Controlled 
deformation can also be achieved by using molecular 
organization of the hydrogel material, by, for example, 
using liquid crystal structures/self-assembly and stim-
ulus-responsive materials to created hygro-responsive 
materials [373, 374].

Many natural materials have complex 3D geome-
tries which produce shape changing behaviour and a 
major challenge when constructing hygro-responsive 
materials with tuneable properties is to ensure that 
a desired aligned structure is achieved. One method 
for obtaining programmed deformation is to produce 
materials containing oriented rigid high aspect ratio 
particles (platelets or fibres). Anisotropy in swelling 
behaviour can be achieved by using shear alignment 
of microfibrils in materials, by using 3D printing [371, 
375]. Rather than embed non-responsive materials in 
a matrix, controlled swelling behaviour in hydrogels 
can be achieved by producing variations in crosslink 
density [376]. Similar effects can be achieved by using 
different levels of substitution of the OH groups of 
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cellulose to create a bilayer film [377]. The use of 3D 
printing technology to create structures to produce a 
desired shape transformation when exposed to mois-
ture is a technique that is referred to as 4D printing 
[378–387]. Applications for such structures include 
biomedical [388, 389], energy [390], smart textiles 
[361], biomimetic building skins [391], moisture-
activated motors [392, 393], activators [371, 394–396] 
sensors [397], shape memory and nanocomposite 
structures [398], self-folding/rolling materials [394], 
nacre-biomimetic structures [399, 400] and program-
mable deformation [371, 401] (Fig. 6).

Apart from the design of such materials being 
inspired by natural moisture-activated structures, the 
design of these materials also allows for the possibil-
ity of providing insights into the moisture sorption 
behaviour of lignocellulosics. For example, control-
ling the crosslink density of a hydrogel will affect 
its Tg, and this would be expected to also influence 
the onset of hysteresis. It is possible to change the 
interaction between the surface of a microfibril and 
hydrogel matrix by chemical substitution and/or intro-
ducing chemical crosslinks, which would affect creep 
behaviour.

Instrumental methods to determine 
the interaction of water with natural 
materials at a molecular scale

The presence of water in natural materials can lead 
to various responses at different length scales. Water 
in the cell wall of wood can reduce the energy bar-
riers to molecular relaxation processes, giving rise 

to viscoelastic behaviour such as creep. Despite the 
importance of moisture in determining the physical 
properties of many natural materials, our understand-
ing of the interaction of moisture with these materials 
remains incomplete. A few instrumental techniques 
are available to study the interaction of moisture with 
natural materials at a molecular level, including vibra-
tion spectroscopy (infra-red (IR), Raman), nuclear 
magnetic resonance (NMR), neutron or X-ray scatter-
ing and diffraction and dielectric relaxation spectros-
copy (DRS). This section reviews these techniques in 
detail for the purposes of improving our understand-
ing of the interaction of water with wood at the cell 
wall scale. The use of these techniques to investigate 
the structure of wood at a molecular level has been 
reviewed elsewhere [138].

Vibrational spectroscopy

Vibrational spectroscopy probes molecular vibrations 
at different frequencies in order to understand chemi-
cal properties based upon characteristic frequencies. 
These characteristic frequencies depend upon bond 
strength and atomic masses. Vibrational spectra are 
obtained with two main techniques, infra-red (IR) 
and Raman spectroscopy, which are based on dif-
ferent physical mechanisms. In IR spectroscopy, the 
molecules within materials are exposed to a polychro-
matic light source and those photons that have ener-
gies that match the gap between the ground state and 
an excited vibrational state are absorbed. In contrast, 
Raman spectroscopy is based on the molecule’s inelas-
tic scattering of monochromatic light, which shifts the 

Figure  6   Examples of design principles for hygro-respon-
sive materials: a example of a bi-component material where 
the upper layer is hygro-responsive and the lower layer is non-
responsive due to crosslinking between adjacent polymers, b the 

bi-component material is created by the chemical substitution 
of active chemical groups in the lower layer (e.g. acetylation of 
OH groups), and c programmed behaviour obtained by targeted 
crosslinking of the polymer matrix.
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frequency of the scattered light by the frequency of 
the molecular vibration. The vibrational transitions 
probed by Raman and IR spectroscopy are the same 
or different depending on the molecule, and the two 
techniques often provide complementary information 
[402]. Bonds with a strong dipole moment (such as OH 
bonds in water) are IR active, but the polarizability is 
usually low, which results in a weak Raman signal 
[403].

The molecular vibrations of water have been widely 
used to study the sorption of water in biomaterials 
[404–409]. Covalent bonds in liquid water, for exam-
ple, result in absorbance bands at ca. 3400 cm−1 (OH 
stretching vibrations) and 1650 cm−1 (HOH bending 
vibrations) within the mid-IR spectrum, which cor-
respond to overtone and combination bands in the 
near-IR spectrum at ca. 5200, 7000 and 8500 cm−1 [410, 
411]. The molecular vibrations of water allow the 
quantification of MC in materials based on band area 
changes [412–414] or multivariate calibration models 
[415–417]. Vibrational spectroscopy is also sensitive 
to changes in the hydrogen-bonded structure of water 
[410, 411, 418], which has been used to differentiate 
between different states of water molecules in the 
wood [405]. A shift in the OH stretching vibrations 
can also be induced by the deuteration of materials. 
Deuteration exchanges the protium (1H) for deuterium 
(2H) in functional groups that form hydrogen bonds 
with deuterium oxide. The band shift that results from 
the mass increase of the vibrating hydrogen has been 
used to study the water accessibility of hydroxyls in 
wood and cellulose [55, 409, 419–422]. However, dis-
similar molar absorptivities of 1HO and 2HO stretch-
ing vibrations [272, 423, 424] and a proportion of non-
exchanging hydroxyls in cellulosic materials [149] may 
affect the quantification of accessible hydroxyls.

With the advancement of instrumentation, molecu-
lar vibrations can even be followed in spatial dimen-
sions, which offers new insights into the moisture dis-
tribution within biomaterials. Hyperspectral images 
can be collected with different imaging setups and 
acquisition modes, but they have in common that 
each pixel contains a continuous spectrum [425]. The 
collected image data are arranged into a three-dimen-
sional hypercube, with one spectral dimension and 
two in-plane spatial dimensions. The spatial resolu-
tion is ultimately determined by the diffraction limit, 
which is dependent on the wavelength.

Near-IR imaging offers a lower spatial resolution 
than mid-IR or Raman micro-spectroscopy. When 

collected with modern push broom (line-scanning) 
instruments, however, near-IR hyperspectral images 
are obtained fast and with minimal sample prepara-
tion [426]. Such instruments have been applied suc-
cessfully to map the MC across wood surfaces. The 
prediction of the MC in individual pixels requires a 
calibration model, which is typically built from gravi-
metrically measured MCs and spectra averaged over 
the corresponding samples based on partial least 
square (PLS) regression. The approach has been 
applied successfully to map MC variations during air 
drying of water-soaked wood [427–429] or after condi-
tioning of untreated, thermally modified or acetylated 
wood between 0–95% RH [430, 431]. This revealed 
the spatially resolved variation in MC, for example 
between outer edges and central parts of the sample 
or between early and latewood regions. In addition to 
quantitative variations, principal component analysis 
(PCA) applied to near-IR hyperspectral images clas-
sified different hydrogen-bonded structures of free 
and bound water across wood surfaces during drying 
[429]. However, near-IR hyperspectral imaging has a 
limited penetration depth and thus maps the MC only 
at the surface. Furthermore, the prediction of MC or 
other properties based on near-IR spectra measured in 
reflectance mode is influenced by surface roughness 
[432, 433].

Vibrational micro-spectroscopy based on mid-IR 
or Raman spectroscopy requires more sample prep-
aration but allows a lateral resolution at the micron 
scale. These techniques are typically applied to thin 
wood or plant sections to follow the chemical com-
position in relation to the microstructure [403]. Vibra-
tional micro-spectroscopy has been applied to study 
local variations of moisture-related spectral bands 
within the hygroscopic range for wood [413], cellu-
lose nanofibers [434] or lignin [435]. In these studies, 
a sample cell controlled the relative humidity and ena-
bled the acquisition of mid-IR or Raman spectra from 
selected areas. Mid-IR micro-spectroscopy allows a 
lateral resolution of ca. 5–20 µm [403]; hence, varia-
tion in water-related bands between different wood 
cell walls could be studied [413]. Confocal Raman 
micro-spectroscopy even achieves a sub-micron res-
olution [403], and this has offered insights into the 
impact of absorbed water in distinct regions within 
the cell walls and the compound middle lamella of 
wood [413]. Mid-IR imaging with micrometre spa-
tial resolution has already been applied to quantify 
the moisture distribution in cellulose nanofiber films 
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[436]. A localization of absorbed water at a sub-micron 
resolution was recently achieved by confocal Raman 
mapping of untreated and acetylated Norway spruce 
cell walls [437]. The study used deuterium oxide to 
condition the samples, and thus, absorbed water and 
water-accessible hydroxyls caused an increase of the 
2HO stretching band at 2300–2685 cm−1 and not the 
1HO stretching band at 3100–3700 cm−1. Thereby, the 
study could also distinguish between water-accessible 
and -inaccessible hydroxyl groups within the wood 
cell wall.

In addition to the linear spectroscopy methods, 
there are nonlinear vibrational spectroscopy methods 
that are less frequently used. Sum frequency genera-
tion (SFG) spectroscopy can distinguish the signal of 
crystalline cellulose from the other fibre wall compo-
nents and has been used to detect irreversible changes 
caused by drying in plant primary cell walls [438]. It 
also provides information on the arrangements of cel-
lulose crystals and their changes during drying and 
rehydration procedures [439]. Nonlinear vibrational 
spectroscopy can also be applied for hyperspectral 
imaging at a high spatial and temporal resolution 
[440]. This has been used for the time-resolved imag-
ing of water diffusion into different materials based on 
coherent anti-Stokes Raman scattering (CARS) micros-
copy [441–443].

NMR spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy 
covers multiple techniques, in which the alignment of 
nuclear spins in a constant magnetic field is perturbed 
by an oscillating field that resonates with the mag-
netic states of the nuclei at specific frequencies. The 
resonance frequencies depend on the strength of the 
static magnetic field, the isotope of observation and 
its chemical environment. The most common nuclei 
observed by NMR spectroscopy are 1H and 13C. Dif-
ferent NMR techniques yield different information on 
water in natural materials and the molecular structure 
of the materials themselves [444–446].

Proton NMR relaxometry, a low-field NMR tech-
nique in the time-domain, uses radio-frequency 
pulses to perturb the alignment of magnetic spins of 
1H nuclei and measures their time-dependent relaxa-
tion. Such experiments can detect especially the signal 
from water, which is affected by the local environment 
of the molecules. By utilizing two-dimensional analy-
sis with correlation mapping to resolve overlapping 

peaks, under some simplifying assumptions, the 
method can distinguish between different bind-
ing states of water in wood, from ‘free’ water to 
‘bound’ water, based on the mobility of the molecules 
[447–449]. Also determining the FSP is possible [70]. A 
further extension of the method by cryoporometry can 
provide information on the size of nanopores in which 
the water resides [450, 451]. Furthermore, pulsed field 
gradient (PFG) NMR has been used to study the self-
diffusion of water for instance in paper and wood, 
including its dependence on the MC [102, 452]. For 
diffusion experiments, pulsed field-gradient stimu-
lated spin echo (PFG STE) NMR is used, but results 
obtained from such a technique can be influenced by 
cross relaxation between the water and macromolecu-
lar matrix [68].

Magnetic resonance imaging, a time-domain 1H 
NMR technique with additional gradient magnetic 
fields, can detect spatial information with a typical 
resolution of around 1 mm [446]. It has been used 
to study the spatial distribution of water in wood 
samples and its changes with water uptake and dry-
ing [453, 454]. An analysis based on relaxation times 
allows separation of water molecules with different 
mobility, leading for instance to observations of the 
drying kinetics of free and bound water separately 
[455].

The nuclear spin interactions depend on spatial 
direction, but this effect is cancelled out in liquid-state 
NMR by the random motion of the molecules. In solid 
samples, on the other hand, line broadening caused by 
the anisotropic interactions is reduced by using the 
magic-angle spinning (MAS) technique. Especially 13C 
cross-polarization (CP), MAS has been widely used to 
study the molecular conformations in cellulose crys-
tals, allowing the characterization of different levels 
of crystalline order and the degree of cellulose crys-
tallinity [444]. Moisture-related changes in these con-
formations and the proximity of different molecular 
groups to water have been observed in wood, pulp 
and various other cellulosic samples [140, 456, 457]. 
Spin diffusion experiments also yield information on 
the spatial proximity of plant cell wall polysaccha-
rides and water [140, 458]. Utilizing the deuteration of 
hydroxyl groups, 2H MAS NMR was able to differenti-
ate between two populations (mobile and immobile) of 
bound water in microcrystalline cellulose [459].
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X‑ray computed tomography

Although this and some of the other techniques pre-
sented in this part of the paper are not used to resolve 
the interaction of water with wood and other plant 
materials at a molecular level, they do nonetheless 
provide unique information regarding the behav-
iour of the cell wall when absorbing and desorbing 
moisture and are included for this reason. The aim 
of computed tomography (CT) is to obtain a three-
dimensional representation of the internal structure 
of an object in a non-destructive manner. This three-
dimensional representation is reconstructed from 
two-dimensional projections (radiographs) that are 
taken from different angles by rotating a sample 
over a defined axis. Ionizing electromagnetic radia-
tion (X-rays or gamma-rays) has sufficient energy to 
penetrate the lignocellulosic cell wall material and to 
interact with its microscopic structures in different 
ways. In the standard X-ray tomography method and 
absorption tomography, the tomographic images pro-
duced with X-rays show variation in the attenuation 
coefficient, which is generally proportional to the mass 
density of the material. When assuming the oven-dry 
cell wall density to be constant, density variations 
shown in the tomographic images are due to the ana-
tomic structure and the water content in cell walls and 
lumens [460, 461]. More advanced X-ray CT methods 
are also available especially at synchrotrons, including 
phase-contrast imaging and other techniques that take 
advantage of coherent X-ray beams and can provide 
better contrast for samples of biological origin [462].

X-ray CT scanners have been used to analyse the 
water distribution in tree trunks [463, 464] and tim-
ber boards during kiln-drying [465, 466] or capillary 
water uptake [467]. The determination of MC typically 
requires two CT images from the same sample, one 
image at the unknown moisture state and one at a 
known MC, i.e. in the oven-dry state. The local MC can 
then be calculated based on the density differences. 
However, wood volume changes due to shrinkage 
must be considered for a pixel-wise measurement of 
the MC, and different mathematical approaches exist 
to achieve this [468, 469].

The emergence of X-ray micro-CT scanners within 
the last decades allows the three-dimensional visu-
alization of plant tissue at resolutions down to ca. 
1 µm [470, 471]. Synchrotron beamlines offer full-field 
micro- and/or nano-tomographic imaging setups with 
even higher spatial resolution and shorter acquisition 

times (several minutes or only seconds) [472–474]. 
This has allowed time-resolved studies of the distri-
bution of water in the cellular structure of wood and 
the determination of contact angles in the cell lumens 
during water uptake [475] and drying of wood [454]. 
When combined with a climate-controlled in situ sam-
ple cell, X-ray CT offers a three-dimensional charac-
terization of materials during exposure to mechanical 
load, temperature and/or water vapour [476]. Thereby, 
moisture-induced dimensional changes have been 
analysed in micron-sized wood samples [182, 278, 
285], individual wood fibres [145] and wood cell wall 
micropillars [286]. This has provided insights into 
local strain variations, hygroexpansion properties of 
the cell walls and other deformations at the cellular 
scale.

Neutron radiography

Neutron imaging or radiography follows similar 
principles as transmission measurements based on 
gamma- or X-rays by measuring the attenuation of 
the incoming radiation by an object within the beam 
path. In contrast to X-ray photons, neutrons have a 
high probability to interact with light elements such 
as hydrogen, while heavier elements are practically 
transparent for neutrons [460, 477, 478]. The high sen-
sitivity to hydrogen (or deuterium) makes neutron 
radiography particularly suitable for the analysis of 
moisture distributions in materials at the micron scale. 
If the image signal is corrected for contributions of 
scattered neutrons, quantitative evaluations are pos-
sible [479, 480]. Neutron radiography has been used 
to visualize the liquid water transport in wood in 
spatial and temporal dimensions. This has provided 
insights into the preferred water pathways in the 
wood microstructure [481–484]. The method has also 
been applied to analyse the variation and transport 
of water vapour and bound water in wood [485–489] 
and cellulose materials [490]. However, for quantita-
tive moisture measurements in the hygroscopic range, 
volume changes in swelling materials must be consid-
ered because they hinder the pixel-wise comparison 
between radiographs taken in a dry and moist state 
[491]. In addition to the two-dimensional neutron 
radiography, recent improvements in neutron instru-
mentation allow fast time-resolved neutron tomogra-
phy, which has been successfully applied to follow 
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the uptake of deuterated water by plant roots with a 
temporal resolution of 10 s [492].

X‑ray and neutron scattering

Elastic scattering of X-rays or neutrons can be used 
to study the molecular level and nanoscale structure 
of natural materials at different moisture conditions 
and therefore learn about their water interactions [493, 
494]. Although the theoretical background is essen-
tially the same, the scattering techniques are often 
divided into small-angle scattering and wide-angle 
scattering (or diffraction) according to the scattering 
angle range and the length scale being studied.

Small-angle scattering techniques, i.e. small-angle 
X-ray scattering (SAXS) and small-angle neutron 
scattering (SANS), are sensitive to spatial variation of 
scattering length density, and they provide informa-
tion on structures at the nanometre scale [495]. The 
scattering length density is proportional to electron 
density in SAXS, whereas in SANS, it is specific to 
the element and isotope. In natural cellulosic fibres, 
these methods show contributions from the cellu-
lose microfibrils and their aggregates, embedded 
in a matrix of lower density, as well as any pores or 
voids, provided that sufficient scattering length den-
sity contrast exists between the different phases [493, 
494]. The data analysis usually requires model fitting 
in the reciprocal space, which can be done based on 
analytical models for simple geometrical shapes or 
by more approximate approaches supported by com-
plementary techniques like microscopy. For instance, 
SAXS and SANS data from wood samples can be 
analysed using the WoodSAS model, which has been 
utilized to quantify moisture-dependent changes in 
the packing distance of microfibrils [496]. The basis 
for this model lies in the earlier interpretations that 
the shoulder feature or peak corresponding to about 
4 nm in the wet state originates from the regular pack-
ing distance between the microfibrils [184, 273, 497]. 
Similar results have been reported for pulp samples or 
fibrillated celluloses based on a shift of a peak appear-
ing in a Kratky plot, which is a simple way to present 
the data in a form that enhances the shoulder feature 
related to the microfibril packing distance [498–500]. 
Also, a contribution of the regular size of microfibril 
bundles (aggregates of individual microfibrils) in 
SANS data has been detected in wood samples, and it 
shows swelling with increasing MC [501]. Moreover, 

as the scattering is sensitive to the contrast created by 
water, the time-dependent penetration and diffusion 
of water at the different hierarchical levels of the fibre 
wall structure can be observed either by SAXS/SANS 
through changes in the amount of water during drying 
[274, 502] or by SANS through a change in the H2O/
D2O ratio within the nanoscale structures [338].

Wide-angle X-ray scattering (WAXS) or X-ray 
diffraction (XRD) has been widely used to observe 
moisture-related changes in the lattice parameters of 
cellulose crystallites and the size of ordered domains 
[162–164, 503]. Although various explanations (e.g. 
compression of the cellulose crystallites noted earlier) 
for these changes have been proposed in the literature 
(summarized in [165]), the latest evidence obtained 
with the aid of molecular dynamics simulations points 
to the effect of lateral aggregation of the fibrils, which 
distorts the cellulose crystallites and increases the lat-
tice spacing perpendicular to the hydrogen-bonded 
molecular sheets of cellulose close to the dry state 
[165]. This idea is supported by the widely reported 
broadening of the diffraction peaks of cellulose with 
drying, which indicates a lower degree of crystalline 
order [504]. In addition to its effects on the cellulose 
crystallites, water produces a broad isotropic scat-
tering contribution in WAXS data, which allows for 
examining the total MC of the sample. In this way, it 
can be possible to correlate the changes in scattering 
data to changes in MC in situ without any additional 
experiments [502]. In neutron scattering, the special 
sensitivity to deuterium allows enhancing the scat-
tering from OH (or OD) groups that are accessible to 
deuterated water. This has been utilized for instance 
in efforts to distinguish the specific contribution of 
microfibril surfaces in wide-angle neutron scattering 
(WANS) intensities [505].

In addition to their coverage over multiple levels of 
the structural hierarchy, a clear benefit of X-ray and 
neutron scattering methods is that they can be used 
to study the water interaction of natural fibres in situ, 
without damaging the sample or cell wall structure 
during the sample preparation or the experimental 
observations. They also allow time-resolved studies 
with a time resolution down to fractions of a second, 
for instance following a change in humidity or tem-
perature, or in response to a mechanical stimulus such 
as stretching. Spatially-resolved data can be obtained 
by mapping the sample with an X-ray beam having 
its diameter in the micro or nanoscale or by using a 
CT method based on scattering or diffraction [462, 
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506]. On the downside, scattering data especially in 
the small-angle regime may be challenging to interpret 
and often require special expertise. With the develop-
ment of established ways to interpret scattering data 
from materials like natural fibres, they may, however, 
provide highly efficient tools to follow the effects of 
water on the nanostructure of these materials. In such 
efforts, scattering data calculated from molecular mod-
els have proven particularly useful [165].

Besides the more commonly used elastic scatter-
ing methods, in which the energy of the scattering 
photon or neutron is conserved, also inelastic scatter-
ing (energy not conserved) has been demonstrated in 
this field. Especially quasi-elastic neutron scattering 
has been utilized to study the mobility of water in 
cellulosic materials, which has allowed the distinc-
tion between different populations of water based 
on their mobility [507, 508]. These populations were 
assigned to water which is closely associated with 
the surface of the cellulose microfibril (attributed 
to non-freezing water) and water that occupies the 
nanopore space between the microfibrils, based upon 
similar assignments being made for porous silica 
materials [507]. Other inelastic neutron scattering 
studies have drawn connections between the water-
accessibility and degree of order in the polymers 
forming natural cellulosic fibres [509] or the effects 
of water on the hydrogen bonding network [510].

Dielectric relaxation spectroscopy

Dielectric relaxation spectroscopy (DRS) is a tech-
nique that is used to study the rotational dynamics 
of molecules having permanent dipole moments and 
has potential for studying the interaction of water 
with lignocellulosic materials and cellulose [181, 
511–513]. Sudo et al. studied the molecular dynam-
ics of water in wood along the fibre direction over 
a large frequency range (from 40 to 10 GHz) [514]. 
This showed evidence of water confined in the cell 
wall having restricted motion. A DRS study of the 
molecular dynamics of the cell wall components at 
different MCs was conducted by Nakao et al. [299] 
who pointed out that although the relaxation behav-
iour of a polymer with a simple structure can be ana-
lysed by linear viscoelastic theory using a distribu-
tion function, the same cannot be done for wood over 
a wide time region. This is because there is no valid 

time–temperature superposition principle for a mul-
tiple component system.

Conclusions

A realistic model describing the sorption isotherm and 
sorption hysteresis loop observed for water vapour 
interactions with lignocellulosic and cellulosic materi-
als is still lacking in the scientific literature. This situa-
tion continues despite the phenomenon being studied 
for over a century. A satisfactory model would have 
to incorporate the following (inter-related) properties:

1.	 A link to the dynamic behaviour of the constitu-
ent macromolecules explaining how the dynamic 
behaviour shifts with changing MC.

2.	 Changing dimensions of the material when absorb-
ing moisture and desorbing moisture.

3.	 Behaviour which is dependent upon the previous 
sorption history of the material.

4.	 An explanation for sorption hysteresis which is 
related to the physical behaviour of the materials, 
especially taking account of sorption properties of 
glassy materials.

5.	 The model should explain mechanosorptive behav-
iour, predicting the effect of changing MC upon 
mechanical properties and also consider how the 
application of external loads changes the sorption 
behaviour. When explaining phenomena such as 
creep, attention must be given to the interaction of 
moisture with the cellulose microfibril-hemicellu-
lose interface.

6.	 The model should be predictive and not rely upon 
arbitrary adjustable parameters for fitting to the 
experimental data.

7.	 Many materials of interest exhibit anisotropic 
behaviour and involve mixtures of essentially inert 
elements (such as fibrils or platelets) embedded 
within an amorphous matrix. A description of this 
anisotropic behaviour needs to be incorporated in 
the model.

In order to reach a comprehensive model, it is 
important to gain realistic information on the molecu-
lar level and nanostructure of the materials. This could 
be enabled by the new possibilities of various in situ 
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characterization methods that can follow the water 
and the related (nano)structural changes under vari-
ous moisture conditions. It is essential that the models 
developed have a physical basis which is informed 
by the physics of the interaction of moisture with the 
cell wall polymers of lignocellulosic materials. These 
instrumental techniques offer the potential for under-
standing these interactions at levels of detail that offers 
the possibility of gaining fundamental insights.
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