Skip to main content
Log in

Effect of calcium carbonate whiskers on the setting behavior, autogenous shrinkage, drying shrinkage, and micro-structure of cement paste

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Improving the volume stability of cement paste is crucial for designing high-strength and high-durability cementitious materials. Therefore, this study proposes a novel approach using calcium carbonate whiskers (CW) with high aspect ratio and high modulus to control the autogenous shrinkage and drying shrinkage of cement paste, and reveals its regulation mechanism through microscopic experiments. The results showed that the addition of 3 vol.% CW in cement paste had the most significant effect on reducing autogenous shrinkage and drying shrinkage, which were reduced by 33.2% and 19.8%, respectively. One is that CW has a retarding effect, which reduced shrinkage cracking due to rapid hydration. Secondly, the water-locking effect of CW slowed down the rapid evaporation of water, thus reducing the mechanical stress in the capillary pores due to water loss, and at the same time reducing the low mass loss. In addition, CW constrained the shrinkage and deformation of capillary pores due to water loss by crossing the capillary pores, and CW also formed a three-dimensional network structure in the microstructure, which increased the overall volume stability of the paste. It is worth that CW as a micron-sized fiber also bridged microcracks due to shrinkage, exhibiting the reinforcement effect of CW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Wu LM, Farzadnia N, Shi CJ, Zhang ZH, Wang H (2017) Autogenous shrinkage of high performance concrete: A review. Constr Build Mater 149:62–75. https://doi.org/10.1016/j.conbuildmat.2017.05.064

    Article  CAS  Google Scholar 

  2. Soliman AM, Nehdi ML (2012) Effect of partially hydrated cementitious materials and superabsorbent polymer on early-age shrinkage of UHPC. Constr Build Mater 41:270–275. https://doi.org/10.1016/j.conbuildmat.2012.12.008

    Article  Google Scholar 

  3. Wang L, Li GX, Li X, Guo FX, Tang SW, Lu X, Hanif A (2021) Influence of reactivity and dosage of MgO expansive agent on shrinkage and crack resistance of face slab concrete. Cement Concr Compos 104333. https://doi.org/10.1016/J.CEMCONCOMP.2021.104333

  4. Soliman AM, Nehdi ML (2014) Effects of shrinkage reducing admixture and wollastonite microfiber on early-age behavior of ultra-high performance concrete. Cement Concr Compos 46:81–89. https://doi.org/10.1016/j.cemconcomp.2013.11.008

    Article  CAS  Google Scholar 

  5. Jafarifar N, Pilakoutas K, Bennett T (2014) Moisture transport and drying shrinkage properties of steel-fibre-reinforced-concrete. Constr Build Mater 73:41–50. https://doi.org/10.1016/j.conbuildmat.2014.09.039

    Article  Google Scholar 

  6. Gong JQ, Zeng W, Zhang WJ (2018) Influence of shrinkage-reducing agent and polypropylene fiber on shrinkage of ceramsite concrete. Constr Build Mater 159:155–163. https://doi.org/10.1016/j.conbuildmat.2017.10.064

    Article  CAS  Google Scholar 

  7. Wen CY, Shen DJ, Luo YY, Wang WT, Liu C, Li M (2023) Early-age autogenous shrinkage and tensile creep of concrete reinforced with polypropylene macro fiber. J Sustain Cem-Based Mater 12(10):1255–1269. https://doi.org/10.1080/21650373.2023.2214135

    Article  CAS  Google Scholar 

  8. Zhu JX, Xu LY, Huang BT, Weng KF, Dai JG (2022) Recent developments in Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) with high and ultra-high strength. Constr Build Mater 342:127956. https://doi.org/10.1016/J.CONBUILDMAT.2022.127956

    Article  Google Scholar 

  9. Li XL, Wang J, Bao Y, Chen GD (2017) Cyclic behavior of damaged reinforced concrete columns repaired with high-performance fiber-reinforced cementitious composite. Eng Struct 136:26–35. https://doi.org/10.1016/j.engstruct.2017.01.015

    Article  Google Scholar 

  10. Wille K, Kim DJ, Naaman AE (2011) Strain-hardening UHP-FRC with low fiber contents. Mater Struct 44(3):583–598. https://doi.org/10.1617/s11527-010-9650-4

    Article  Google Scholar 

  11. Metaxa ZS, Konsta-Gdoutos MS, Shah SP (2013) Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency. Cement Concr Compos 36:25–32. https://doi.org/10.1016/j.cemconcomp.2012.10.009

    Article  CAS  Google Scholar 

  12. Saulat H, Cao ML, Khan MM, Khan M, Rehman A (2020) Preparation and applications of calcium carbonate whisker with a special focus on construction materials. Constr Build Mater 236(C):117613–117613. https://doi.org/10.1016/j.conbuildmat.2019.117613

  13. Zhou ZL, Xie N, Cheng X, Feng LC, Hou PK, Huang SF, Zhou ZH (2020) Electrical properties of low dosage carbon nanofiber/cement composite: Percolation behavior and polarization effect. Cement Concr Compos 109(C):103539–103539. https://doi.org/10.1016/j.cemconcomp.2020.103539

  14. Zhai ST, Pang B, Liu GJ, Zhang Y, Xu KL, She W, Zhang YS (2021) Investigation on preparation and multifunctionality of reduced graphene oxide cement mortar. Constr Build Mater 275:122119. https://doi.org/10.1016/J.CONBUILDMAT.2020.122119

    Article  CAS  Google Scholar 

  15. Chen ZS, Zhou X, Wang X, Guo P (2018) Mechanical behavior of multilayer GO carbon-fiber cement composites. Constr Build Mater 159:205–212. https://doi.org/10.1016/j.conbuildmat.2017.10.094

    Article  CAS  Google Scholar 

  16. Moon RJ, Ashlie M, John N, John S, Jeff Y (2011) Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. https://doi.org/10.1039/c0cs00108b

    Article  CAS  PubMed  Google Scholar 

  17. Feng S, Lyu JJ, Xiao HG, Feng JH (2023) Application of cellulose fibre in ultra-high-performance concrete to mitigate autogenous shrinkage. J Sustain Cem-Based Mater 12(7):842–855. https://doi.org/10.1080/21650373.2022.2119618

    Article  CAS  Google Scholar 

  18. Hisseine OA, Basic N, Omran AF, Tagnit-Hamou A (2018) Feasibility of using cellulose filaments as a viscosity modifying agent in self-consolidating concrete. Cement Concr Compos 94:327–340. https://doi.org/10.1016/j.cemconcomp.2018.09.009

    Article  CAS  Google Scholar 

  19. Hisseine OA, Wilson W, Sorelli L, Tolnai B, Tagnit-Hamou A (2019) Nanocellulose for improved concrete performance: A macro-to-micro investigation for disclosing the effects of cellulose filaments on strength of cement systems. Constr Build Mater 206:84–96. https://doi.org/10.1016/j.conbuildmat.2019.02.042

    Article  CAS  Google Scholar 

  20. Hisseine OA, Soliman NA, Tolnai B, Tagnit-Hamou A (2020) Nano-engineered ultra-high performance concrete for controlled autogenous shrinkage using nanocellulose. Cem Concr Res 137:106217. https://doi.org/10.1016/j.cemconres.2020.106217

    Article  CAS  Google Scholar 

  21. Cao ML, Xie CP, Guan JF (2019) Fracture behavior of cement mortar reinforced by hybrid composite fiber consisting of CaCO3 whiskers and PVA-steel hybrid fibers. Compos A 120:172–187. https://doi.org/10.1016/j.compositesa.2019.03.002

    Article  CAS  Google Scholar 

  22. Cao ML (1801) Zhang C (2012) Dispersion, microstructure and mechanical properties of ground calcium carbonate whisker-reinforced portland cement. Appl Mech Mater 174–177:1398–1401. https://doi.org/10.4028/www.scientific.net/AMM.174-177.1398

    Article  CAS  Google Scholar 

  23. Cao ML, Zhang C (2012) Strengthening and toughening efficiency of calcium carbonate whisker-reinforced portland cement with or without silica fume. Adv Mater Res 1673(479–481):536–540. https://doi.org/10.4028/www.scientific.net/AMR.479-481.536

    Article  CAS  Google Scholar 

  24. Li L, Cao ML, Yin H (2019) Comparative roles between aragonite and calcite calcium carbonate whiskers in the hydration and strength of cement paste. Cement Concr Compos 104:103350. https://doi.org/10.1016/j.cemconcomp.2019.103350

    Article  CAS  Google Scholar 

  25. Ma H, Cai JM, Lin Z, Qian SZ, Li VC (2017) CaCO3 whisker modified Engineered Cementitious Composite with local ingredients. Constr Build Mater 151:1–8. https://doi.org/10.1016/j.conbuildmat.2017.06.057

    Article  CAS  Google Scholar 

  26. Yang YY, Deng Y (2018) Mechanical properties of hybrid short fibers reinforced oil well cement by polyester fiber and calcium carbonate whisker. Constr Build Mater 182:258–272. https://doi.org/10.1016/j.conbuildmat.2018.06.110

    Article  CAS  Google Scholar 

  27. Park JJ, Yoo DY, Kim SW, Yoon YS (2013) Drying shrinkage cracking characteristics of ultra-high-performance fibre reinforced concrete with expansive and shrinkage reducing agents. Mag Concr Res 65(4):248–256. https://doi.org/10.1680/macr.12.00069

    Article  CAS  Google Scholar 

  28. Justs J, Wyrzykowski M, Bajare D, Lura P (2015) Internal curing by superabsorbent polymers in ultra-high performance concrete. Cem Concr Res 76:82–90. https://doi.org/10.1016/j.cemconres.2015.05.005

    Article  CAS  Google Scholar 

  29. Konsta-Gdoutos MS, Metaxa ZS, Shah SP (2009) Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement Concr Compos 32(2):110–115. https://doi.org/10.1016/j.cemconcomp.2009.10.007

    Article  CAS  Google Scholar 

  30. Lanone S, Andujar P, Kermanizadeh A, Boczkowski J (2013) Determinants of carbon nanotube toxicity. Adv Drug Deliv Rev 65(15):2063–2069. https://doi.org/10.1016/j.addr.2013.07.019

    Article  CAS  PubMed  Google Scholar 

  31. Cao ML, Xu L, Zhang C (2016) Rheology, fiber distribution and mechanical properties of calcium carbonate (CaCO3) whisker reinforced cement mortar. Compos A 90:662–669. https://doi.org/10.1016/j.compositesa.2016.08.033

    Article  CAS  Google Scholar 

  32. Ming X, Cao ML, Yin H (2020) Microstructural and mechanical evolutions of sustainable cement blends containing fly ash and calcium carbonate whiskers induced by high temperature. Constr Build Mater 263:120615. https://doi.org/10.1016/j.conbuildmat.2020.120615

    Article  CAS  Google Scholar 

  33. Wang L, Zhang HL, Zhao BD, Gao Y (2019) Effect of calcium carbonate whisker and fly ash on mechanical properties of cement mortar under high temperatures. Adv Mater Sci Eng 2019:1–13. https://doi.org/10.1155/2019/9430804

    Article  CAS  Google Scholar 

  34. Li L (2018) Evolutionary and micro mechanisms of multi-scale fiber reinforced cementitious composites after high temperature exposure. Dalian University of Technology, (degree thesis, China)

  35. GB 175–2007 Common Portland Cement, China National Standardization Management Committee. Beijing; 2007. (in Chinese). https://www.doc88.com/p-0367330084531.html

  36. GB/T 1346–2011 Test methods for water reqirement of normal consistency, setting time and soundness of the porland cement. Beijing: China Building Materials Academy. (in Chinese). https://www.doc88.com/p-74787942239056.html

  37. Zhang XZ, Sun HL, Yang HB, Mu R, Chen H (2021) Rheological properties of nanosilica-modified cement paste at different temperatures and hydration times. J Mater Civ Eng 33(1):04020404. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003488

    Article  CAS  Google Scholar 

  38. Plusquellec G, Geiker MR, Lindgard J, Duchesne J, Fournier B, Weerdt KD (2017) Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison. Cem Concr Res 96:13–26. https://doi.org/10.1016/j.cemconres.2017.03.002

    Article  CAS  Google Scholar 

  39. ASTM C1698−19 (2019) Standard test method for autogenous strain of cement paste and mortar. ASTM 2019 International, West Conshohocken. https://www.doc88.com/p-3117376595656.html

  40. JC/T 603–2004 (2004) Standard test method for drying shinkage of mortar. China National Development and Reform Commission. https://www.doc88.com/p-6961354288375.html

  41. Cao ML, Zhang C, Lv HF (2014) Mechanical response and shrinkage performance of cementitious composites with a new fiber hybridization. Constr Build Mater 57:45–52. https://doi.org/10.1016/j.conbuildmat.2014.01.088

    Article  Google Scholar 

  42. Malecot Y, Zingg L, Briffaut M, Baroth J (2019) Influence of free water on concrete triaxial behavior: The effect of porosity. Cem Concr Res 120:207–216. https://doi.org/10.1016/j.cemconres.2019.03.010

    Article  CAS  Google Scholar 

  43. Cao ML, Khan M, Ahmed S (2020) Effectiveness of calcium carbonate whisker in cementitious composites. Period Polytech Civ Eng 64(1):265–275. https://doi.org/10.3311/PPCI.14288

    Article  Google Scholar 

  44. Shen DJ, Liu C, Luo YY, Shao HZ, Zhou XY, Bai SL (2023) Early-age autogenous shrinkage, tensile creep, and restrained cracking behavior of ultra-high-performance concrete incorporating polypropylene fibers. Cement Concr Compos 138:104948. https://doi.org/10.1016/J.CEMCONCOMP.2023.104948

    Article  CAS  Google Scholar 

  45. Ruan SQ, Chen SK, Zhang YJ, Yan DM, Zhang MZ (2023) Early-age deformation of hydrophobized metakaolin-based geopolymers. Cem Concr Res 169:107168. https://doi.org/10.1016/J.CEMCONRES.2023.107168

    Article  CAS  Google Scholar 

  46. Baroghel-Bouny V, Mounanga P, Khelidj A (2006) Autogenous deformations of cement pastes: Part II. W/C effects, micro-macro correlations, and threshold values. Cem Concr Res 36(1):123–136

  47. Julien A, Rémi F, Ameni G, Sylvie R (2021) Influence of the geopolymer formulation on the endogeneous shrinkage. Constr Build Mater 298:123813. https://doi.org/10.1016/J.CONBUILDMAT.2021.123813

    Article  Google Scholar 

  48. Liu GP, Liao YS, Liu LJ, Qiu L, Guo DW (2019) Expeimental study on mechanical properties and autogenous shrinkage of cement-based materials with ramie fiber. J Funct Mater 50(07):7176–7181 (in Chinese)

  49. Xie CP, Cao ML, Si W, Khan M (2020) Experimental evaluation on fiber distribution characteristics and mechanical properties of calcium carbonate whisker modified hybrid fibers reinforced cementitious composites. Constr Build Mater 265:120292. https://doi.org/10.1016/j.conbuildmat.2020.120292

    Article  CAS  Google Scholar 

  50. Meng W (2018) Khayat KH (2018) Effect of graphite nanoplatelets and carbon nanofibers on rheology, hydration, shrinkage, mechanical properties, and microstructure of UHPC. Cem Concr Res 105:64–71. https://doi.org/10.1016/j.cemconres.2018.01.001

    Article  CAS  Google Scholar 

  51. Ippei M, Hiroki S, Syota U, Ryo K (2022) Effect of fineness of cement on drying shrinkage. Cem Concr Res 161:106961. https://doi.org/10.1016/J.CEMCONRES.2022.106961

    Article  Google Scholar 

  52. Fazel A, Mohammad H, Mahdi K, Mohammad S (2022) Effect of calcium stearate and aluminum powder on free and restrained drying shrinkage, crack characteristic and mechanical properties of concrete. Cement Concr Compos 125:104276. https://doi.org/10.1016/J.CEMCONCOMP.2021.104276

    Article  Google Scholar 

  53. Rezvani M, Proske T, Graubner C (2019) Modelling the drying shrinkage of concrete made with limestone-rich cements. Cem Concr Res 115:160–175. https://doi.org/10.1016/j.cemconres.2018.09.003

    Article  CAS  Google Scholar 

  54. Tran NP, Gunasekara C, Law DW, HoushyarSetungeCwirzen SSA (2021) A critical review on drying shrinkage mitigation strategies in cement-based materials. J Build Eng 38(9):102210. https://doi.org/10.1016/J.JOBE.2021.102210

    Article  Google Scholar 

  55. Liu JH, Shi CJ, Ma XW, Khayat KH, Zhang Q, Wang DH (2017) An overview on the effect of internal curing on shrinkage of high performance cement-based materials. Constr Build Mater 146:702–712. https://doi.org/10.1016/j.conbuildmat.2017.04.154

    Article  CAS  Google Scholar 

  56. Mao YG, Liu JH, Shi CJ (2021) Autogenous shrinkage and drying shrinkage of recycled aggregate concrete: A review. J Clean Prod 295:126435. https://doi.org/10.1016/J.JCLEPRO.2021.126435

    Article  Google Scholar 

  57. Mehta PJ, Monteiro PJM (2001) Concrete: Microstructure, properties, and materials,. McGraw-Hill Education. https://www.researchgate.net/publication/312453453_Concrete_Microstructure_Properties_and_Material

  58. Cao ML, Zhang C, Wei JQ (2013) Microscopic reinforcement for cement based composite materials. Constr Build Mater 40:14–25. https://doi.org/10.1016/j.conbuildmat.2012.10.012

    Article  Google Scholar 

  59. Xia DT, He MS, Tang YJ, Shi LW (2012) Experimental study on concrete’s dry-shrinkage stress in construction stage. Constr Build Mater 378–379:200–203. https://doi.org/10.4028/www.scientific.net/AMR.378-379.200

    Article  Google Scholar 

  60. Zhang SH, Lu DY, Xu JT (2016) Effects of dolomite and limestone powders on strength and hydration of cement mortars. J Chin Ceram Soc 44(08):1126–1133. https://doi.org/10.14062/j.issn.0454-5648.2016.08.08

  61. Dong SF, Han BG, Yu X, Ou JP (2019) Constitutive model and reinforcing mechanisms of uniaxial compressive property for reactive powder concrete with super-fine stainless wire. Compos B 166:298–309. https://doi.org/10.1016/j.compositesb.2018.12.015

    Article  CAS  Google Scholar 

  62. Cao ML, Ming X, Yin H, Li L (2019) Influence of high temperature on strength, ultrasonic velocity and mass loss of calcium carbonate whisker reinforced cement paste. Compos B 163:438–446. https://doi.org/10.1016/j.compositesb.2019.01.030

    Article  CAS  Google Scholar 

  63. Pouhet R, Cyr M, Bucher R (2019) Influence of the initial water content in flash calcined metakaolin-based geopolymer. Constr Build Mater 201:421–429. https://doi.org/10.1016/j.conbuildmat.2018.12.201

    Article  CAS  Google Scholar 

  64. Beltzung FO, Wittmann FH (2005) Role of disjoining pressure in cement based materials. Cem Concr Res 35(12):2364–2370. https://doi.org/10.1016/j.cemconres.2005.04.004

    Article  CAS  Google Scholar 

  65. Vincent T, Stéphane M, Virginie B, Hugo L, Bastien B, Amélie C, Raphaël B, Laura DC, Martin D (2022) Shrinkage mitigation of metakaolin-based geopolymer activated by sodium silicate solution. Cem Concr Res 162:106993. https://doi.org/10.1016/J.CEMCONRES.2022.106993

    Article  Google Scholar 

  66. Steiger M (2005) Crystal growth in porous materials—I: The crystallization pressure of large crystals. J Cryst Growth 282(3):455–469. https://doi.org/10.1016/j.jcrysgro.2005.05.007

    Article  CAS  Google Scholar 

  67. Steiger M (2005) Crystal growth in porous materials—II: Influence of crystal size on the crystallization pressure. J Cryst Growth 282(3):470–481. https://doi.org/10.1016/j.jcrysgro.2005.05.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Natural Science Foundation of China under Grant No. 51678111. Cooperation project between Dalian University of Technology and CHINA MCC22 GROUP CORPORATION LTD. Key technology of concrete crack control for continuous cast-in-place box girder of Yanyingzi Bridge DUT-HX20200728. In addition, the authors acknowledge the assistance of DUT Instrumental Analysis Center.

Author information

Authors and Affiliations

Authors

Contributions

SW: Data curation, Writing—original draft, Formal analysis, Visualization, Writing—review & editing. YL: Data curation, Visualization. GY: Funding acquisition. MC: Conceptualization, Supervision, Funding acquisition.

Corresponding author

Correspondence to Mingli Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, S., Li, Y., Yao, G. et al. Effect of calcium carbonate whiskers on the setting behavior, autogenous shrinkage, drying shrinkage, and micro-structure of cement paste. J Mater Sci 59, 7028–7043 (2024). https://doi.org/10.1007/s10853-024-09573-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09573-w

Navigation