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ABSTRACT
In low- to middle-income communities, the lack of affordability of conventional 
sanitary products during menstrual cycles can cause psychological and health 
issues, ultimately affecting their quality of life. It is crucial to develop alternative 
products that are affordable and accessible to all while also promoting menstrual 
health and hygiene. Super absorbent polymers (SAPs) are a vital component in 
current disposable sanitary pads and nappies. However, these SAPs are often 
non-biodegradable and non-biocompatible. Therefore, the use of eco-friendly 
materials for the production of SAPs is gaining popularity in the hygiene indus-
try, as it offers a means to reduce the carbon footprint and environmental impact 
associated with traditional SAPs made from non-renewable petroleum-based 
materials. SAPs made from polysaccharides often have naturally occurring anti-
bacterial properties, making them appealing for commercial applications in sani-
tary products such as sanitary pads. In addition, the move toward reusable sani-
tary pads with antibacterial properties can significantly reduce waste generated 
by single-use products and prevent the growth of bacteria, improving the safety 
and hygiene of the product. Furthermore, computational modeling and artificial 
intelligence are now important tools in SAP synthesis, providing advantages such 
as predicting polymer properties, rationalizing synthesis pathways, and improv-
ing quality control. These tools can reduce synthesis costs by eliminating the 
need for trial-and-error approaches in polymer synthesis, ultimately promoting 
more affordable products for end users. Overall, these advancements in polymer 
synthesis and material design can help to create a more sustainable industry and 
promote menstrual hygiene and product accessibility to those who need it most.
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per user per year [8]. In context of global efforts aimed 
at reducing single-use plastic, the conventional utiliza-
tion of plastic-laden disposable service products pre-
sent a challenge owing to their slow decomposition 
rate (500–800 years [9]), thereby causing detrimental 
effects on the environment. Improper disposal, high-
lighted in a review on menstrual hygiene manage-
ment in India and South Africa, [10] exacerbates waste 
management issues, with alarming findings such as 
20 sanitary items per 100 m of shoreline in 2016 and 
an estimated 9000 tons of sanitary waste annually in 
India alone [11]. DSPs typically have a hydrophobic 
outer layer with unique patterns (holes) that lead men-
strual fluids away from the body, where various inner 
layers absorb them. The back layer consists of hydro-
phobic plastics to prevent leakage and the inner layer 
is typically comprised of an absorbent layer, typically 
a superabsorbent polymer. In plastics, chemicals like 
phthalates are present and they are used as plasticiz-
ers in various industrial and consumer products (e.g., 
in the top layer and plastic of DSP). Epidemiologic 
studies have linked exposure to phthalates with preco-
cious puberty, endometriosis, female genital tumors, 
and ovulation disorders [12].

Superabsorbent polymers (SAPs) are synthetic 
materials made from slightly cross-linked polyacrylic 
acid, polyacryl amides, polyacrylonitriles, and their 
salt derivatives [13]. These polymers have the ability 
to absorb and retain large amounts of water or aque-
ous solutions, up to several hundred times their own 
weight. This property makes them useful in a wide 
range of industries, sanitary products, wastewater 
treatment, construction and agriculture [14–17]. SAPs 
are produced by polymerizing acrylic acid or one of 
its derivatives, such as sodium acrylate or potassium 
acrylate, which are then cross-linked with a chemical 
cross-linker, forming a three-dimensional network of 
polymer chains [13]. One of the advantages of poly-
acrylic-based SAPs is their cost-effectiveness, as the 
raw materials are readily available and the produc-
tion process is relatively straightforward. Addition-
ally, these polymers have good biocompatibility and 
are generally safe for use in medical and personal care 
products. However, SAPs are not without limitations. 
They can release small amounts of residual monomers 
or cross-linkers during use, which can be a concern 
in some applications [19]. Furthermore, the disposal 
of SAP-containing products can be problematic, as 
they do not readily biodegrade and can contribute to 
environmental pollution. Petroleum-based SAPs pose 

Introduction

Acknowledging and prioritizing the sensitive psycho-
social, health, and hygiene continuum of menstrual 
circumstances is gaining international policy impor-
tance in a bid to promote dignity, gender equality, and 
reproductive health among all groups but especially 
among vulnerable and lower-income groups [1]. In 
2012, the formalization of MHM (Menstrual Health 
Management) acknowledged challenges associated 
with menstruation, emphasizing privacy and changing 
of sanitary materials, access to water, sanitation, and 
hygiene (WASH) facilities, safe disposal areas, and the 
importance of comprehensive menstrual cycle knowl-
edge with dignity. All of this should also be done with 
relevant and correct knowledge about the menstrual 
cycle and how to manage it without discomfort or 
fear, but with dignity [2]. There is consistent evidence 
of wealth-related inequality and “period poverty” in 
the menstrual continuum: Lack of education and poor 
literacy, access, usage, and disposal of pads and even 
infrastructural limitations of households all contribute 
to such imbalances [3]. Limited awareness, bias, cul-
tural norms, resource constraints, environment, safety 
concerns, and product availability hinder thorough 
menstrual product testing and personalized manage-
ment [4]. Although most of the research on menstrual 
hygiene management focuses on the challenges faced 
by women in sub-Saharan Africa and South Asia [5], 
similar issues persist in other regions, including East 
Asia, Latin America, the Caribbean, and the Middle 
East [6]. The high cost of reliable sanitary products 
adversely affects education, gender equality, and 
women’s reproductive health globally [7]. The high 
cost of dependable sanitary products can result in 
school absenteeism, hindering education attainment 
and gender equality for girls in low-income areas [7]. 
Since traditional methods of controlling menstrual 
bleeding have unreliable levels of absorbency and 
are unsanitary and dangerous to women’s reproduc-
tive health, the availability of high-quality, absorbent, 
and affordable menstrual hygiene products is urgently 
needed.

Disposable sanitary pads (DSPs) are single-use 
products used during menstrual periods. However, 
the disposal of sanitary products is a significant chal-
lenge, particularly the plastic-lined ones, which can 
contain harmful substances, posing environmental 
and health risks. It has been reported that DSPs esti-
mated annual solid waste could amount to 44 254  cm3 
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a challenge due to their complex cross-linked struc-
tures and high molecular weight, which results in poor 
biodegradability [13]. Additionally, the raw materials 
necessary for synthesizing most SAPs come from fossil 
fuels, rendering them non-renewable.

Consideration of key factors is crucial when design-
ing a sanitary pad that prioritizes safety and comfort. 
These essential points are outlined in Table 1, detailing 
the criteria for creating an ideal sanitary pad. Meet-
ing these criteria ensures that modern sanitary pads 
are not only effective in managing menstrual hygiene 
but also prioritize comfort, safety, and environmental 
sustainability.

This review addresses limitations in SAPs and high-
lights a literature gap on nanotechnology’s role in pro-
viding self-cleaning and antibacterial/fungal proper-
ties to reusable sanitary napkins. This is important 
because since proper menstrual hygiene is crucial for 
minimizing infection risks, cervical cancer, and rashes 
during menstruation.

Types of SAPs

Super absorbing polymers (SAPs) are hydrophilic 
materials with high absorption capacities for water 
and aqueous liquids relative to their mass, thus mak-
ing them attractive for commercial applications in 
agriculture, wound dressing, construction, hygiene, 
etc. In agriculture, they are used as controlled deliv-
ery systems of agrochemicals, pesticide carriers, and 
to maintain soil humidity by improving water reten-
tion capacity [20–23]. The incorporated SAPs reduce 
drought stress and prolong the time needed before 
the next irrigation cycle, ultimately reducing water 
wastage and optimizing profits [24]. The construction 
industry uses SAPs to enhance the multiple proper-
ties of concrete, such as preventing crack formation, 
fire-retardation, self-healing concrete, and controlling 

water absorption and release [25, 26]. In the electronics 
space, SAPs are investigated as electrolytes in flexible 
Zn-based batteries [27, 28]. In the hygiene and cosmet-
ics industries, SAPs are used in sanitary pads, diapers, 
and as biocosmetics (100% natural ingredients) [29]. 
SAPs also have many applications in medicine, rang-
ing from drug delivery systems to wound healing and 
even disposable medical protective clothing [30–32]. In 
disposable medical protective clothing, SAPs contrib-
ute to fluid management, odor, and infection control 
which are needs in healthcare settings especially dur-
ing medical operations.

SAPs can be categorized according to the type of 
raw material used to prepare them, synthetic (petro-
leum based) and natural (polypeptide and polysac-
charide based). SAPs are further classified as physical 
absorbers because of their mechanism of water absorp-
tion, which includes (1) entrapment of solution mol-
ecules by capillary forces, (2) changes of the crystal 
structure, (3) a combination of the two, or (4) coupled 
combination of one and two with the dissolution and 
expansion of the cross-linked polymer chains. Typi-
cally, absorption and expansion of the SAP is depend-
ent on the amount of cross-linkages present. Com-
pared to high density cross-linked SAPs, low density 
cross-linked SAPs exhibit better expansion and absor-
bent capacity [24]. The polymer chains contain ions 
that induce an osmotic gradient through which water 
is absorbed with hydrogen bonding the primary mode 
for holding the water molecules within the polymer 
chains [24, 33].

Petroleum‑based SAPs

Polyacrylate-based SAPs are the most widely utilized, 
primarily due to their low-cost and exceptional ability 
to absorb water. These SAPs are presently produced 
from petroleum-based feedstock through the polym-
erization/copolymerization of acrylic acid, sodium 

Table 1  Basic criterion for designing an ideal sanitary pad

Absorbency Effective absorption to control menstrual flow while maintaining the user’s comfort and dryness
Chemical safety Using materials that are safe and free of dangerous, chemicals can help avoid allergies and skin discomfort
Odor control The used materials should manage and control odor during use
Comfort and breathability Comfortable material and design with sufficient ventilation is necessary to minimize moisture and 

enhance airflow, thus preventing discomfort and irritation
Environmentally friendly Taking into account the effects on the environment, including material reusability and biodegradability
Affordability Affordable prices to guarantee accessibility for a large number of customers
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acrylate, acrylamide, and/or acrylonitrile. Due to 
cross-linking (which creates a 3D structure), these 
polyacrylate SAPs are stable and non-biodegradable. 
Even though a bio-based method can partially pro-
duce acrylic acid, the disadvantage is that the result-
ing acrylate-based SAPs have limited biodegradability 
[34–37].

Sodium polyacrylate is a crucial component in sani-
tary products such as diapers and sanitary pads. It has 
an absorption capacity hundreds of times its weight 
and exceptional water retention capabilities even 
when subjected to pressure [38]. The mineral content 
of solutions influences the osmotic flow required for 
aqueous solution absorption; thus, deionized water 
has the highest absorption capacity, followed by tap 
water and saline solutions. Because blood and urine 
contain mineral salts such as NaCl, this should be con-
sidered when developing SAPs for sanitary products. 
Water absorption capacity, defined as the weight of 
absorbed liquid divided by the dry weight of SAP, is 
a fundamental parameter that describes SAPs’ ability 
to retain water [13]. Polyacrylamide is another type 
of SAP that possesses non-toxic properties and can 
be broken down by microorganisms through aerobic 
processes, rendering it an eco-friendly option [39–41]. 
However, the starting monomer acrylamide is petro-
leum based and is considered a carcinogenic agent [42, 
43] (Fig. 1).

Several reports are available on the synthesis 
and structural modifications of SAPs through sur-
face cross-linking techniques to improve their water 
absorption properties. For instance, Azizi and col-
leagues employed polyamine modifiers such as 
diethylenetriamine (DETA) and polyethyleneimine 
(PEI) to modify the surface of terpolymers, with or 
without using an  AlCl3 catalyst. When DETA was 
used as the surface modifier in free swelling meas-
urements, the addition of the catalyst decreased the 
absorption capacity in both distilled and saline water. 
However, when absorption under load (AUL) meas-
urements were conducted, absorption increased from 
17.71 ± 0.71 to 23.46 ± 0.94 g/g. Similarly, when PEI was 
used as the surface modifier, the AUL also increased 
from 17.71 ± 0.71 to 24.82 ± 0.94 g/g with the addition of 
the catalyst. Consequently, it was concluded that add-
ing surface modifiers and an  AlCl3 catalyst enhanced 
absorption under load by approximately 25% [44]. 
Another study involved cross-linking the surface 
region of SAP spheres with ethylene glycol diglyci-
dyl ether to improve their mechanical properties [45, 

46]. Enhancing the surface contact between the SAPs 
and water accelerates the water absorption. This is 
achieved by increasing the specific surface area of 
SAPs, which can be done through the creation of a 
porous structure (see Fig. 2) [47]. There are various 
methods to create the porous structure of SAPs, such 
as phase inversion [48–50], freeze-drying and hydra-
tion [51–54], water-soluble porogens [55–58], and 
foaming [59–61]. Researchers have also investigated 
different drying techniques, such as using water vapor 
from the dehydration of Al(OH)3, to create porous 
SAPs [62].

The problem with petroleum-derived SAPs is that 
their complex cross-linked structures and high molec-
ular weight afford low biodegradability [13]. Moreo-
ver, the raw materials required for synthesizing most 
SAPs are fossil fuels, thus making them non-renew-
able. Firstly, there is a high demand for fossil fuels 
to support a rapidly growing population, which has 
resulted in their overconsumption and will soon be 
depleted. To promote sustainable development, shift-
ing toward SAPs made from renewable resources is 
necessary. Developing more environmentally friendly 
and biodegradable SAPs can effectively address these 
limitations (Fig. 3).

Biopolymers

The use of SAPs as the primary materials for com-
mercial sanitary pads became popular in Japan and 
the USA in the 1970s [63, 64]. The high production 
cost and significant environmental impact of synthetic 
polymers have been two major concerns regarding the 
production of SAPs, despite their superior absorption 
capacity [65–67]. In comparison, natural plant fibers 
like cellulose are highly absorbent due to their ability 
to attract water. The cell walls of these fibers contain 
hydroxyl and other oxygen-containing groups that 
attract moisture through hydrogen bonding, caus-
ing the fibers to expand as they absorb water. Cotton 
fibers can absorb up to 24–27 times their weight [68]. 
Although natural fiber does not have the absorption 
capability of SAPs, there are examples of SAPs pre-
pared from natural feedstock with good absorption 
capability [69–72]. Superabsorbent polymers made 
from natural products have recently received much 
attention due to their positive environmental impact 
[73–80]. These SAPs are primarily composed of poly-
saccharides, and their primary advantage is their bio-
degradability, low-cost synthesis, and endorsement of 
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a circular economy (see Fig. 4 for some common poly-
saccharides). Biodegradable polymers can degrade 
under ambient conditions by chemical hydrolysis or 
through enzymatic actions of microorganisms.

Polysaccharides are abundant with hydroxyl, car-
boxyl, and amine groups that can be used to prepare 
superabsorbent polymers with fascinating structures 
and properties. Many natural SAPs have been synthe-
sized from alginate, cellulose, chitosan, and starch [73]. 
Natural SAPs are more attractive than their petroleum-
based counterparts in personal hygiene products, 
because of their biocompatibility and as a result, they 

have no harmful or toxic effects on human skin [14]. 
Therefore, bio-SAPs with exceptionally high absorp-
tion capacities must be developed to compete commer-
cially with the existing acrylate-based polymers. The 
high functionalization capabilities of polysaccharides 
make them ideal candidates as SAPs due to their abil-
ity to produce SAPs with impressive absorption and 
retention capacities for aqueous solutions.

Cellulose is the primary component of plants, and 
it can form 3D networks of superabsorbent polymers 
[14]. It is biodegradable, biocompatible, highly abun-
dant, inexpensive, and originates from a renewable 

Figure 1  Illustration of the preparation processes of a modified 
PVA fibers and b their implementation as hygroscopic and strong 
antistatic medical protective clothing material [30]. Reprinted 
from Adv. Fiber Mater., 2, Yang, L.; Liu, H.; Ding, S.; Wu, J.; 

Zhang, Y.; Wang, Z.; Wei, L.; Tian, M.; Tao, G., Superabsorbent 
Fibers for Comfortable Disposable Medical Protective Cloth-
ing, 140–149, Copyright (2020), with permission from Springer 
Nature.
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resource. SAPs produced from cellulose are insolu-
ble in water, although they can absorb large amounts 
of water and aqueous solutions. Cellulose-based 
SAPs can also be prepared by applying cryogenic 

treatment at ambient temperature. These SAPs (cry-
ogels) can be formed by hydrogen bonding during 
one of the stages of the freeze–thawing cycle. Repeat-
ing the freeze–thawing cycles introduces physical 

Figure  2  Scanning electron micrographs of a non-porous SAP 
(A) and a corresponding SPH (B and C) [47]. Reprinted from 
J. Control. Release., 102, Omidian, H.; Rocca, J. G.; Park, K., 

Advances in Superporous Hydrogels, 3 -12, Copyright (2005), 
with permission from Elsevier.

(a)

(d)(c)

(b)

Figure 3  General representation of common polysaccharides a alginate, b chitosan, c cellulose, and d starch.
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cross-linking and crystallinity [81–84]. With this 
background, Zhang and colleagues reported a series 
of polyvinyl alcohol (PVA) and sodium carboxym-
ethylcellulose (CMC) hydrogels synthesized by physi-
cal mixing and freeze–thawing [85]. The interaction 
between the two molecules resulted in intramolecular 
entanglements forming three-dimensional polymeric 
physical cryogels, which are stabilized by the nature 
of these bonds. During freeze–thawing, the polymer 
chains create ordered structures called microcrystal-
line zones that act as junction knots of the network. 
Most polysaccharides contain hydroxyl and carboxyl 
groups; hence, it is suggested that the intermolecular 
forces in these zones are hydrogen bonding. Kim and 
colleagues report a crystalline bacterial cellulose (BC) 
and PVA composite hydrogel with enhanced mechani-
cal strength. Subjecting the hydrogel to repetitive 
freeze–thaw cycles resulted in the spontaneous crys-
tallization of polymer chains around the BC nanofib-
ers, ultimately increasing the mechanical strength of 
the gel [84]. This methodology is particularly promis-
ing for developing robust hydrogels since it enhances 
mechanical strength without the need for chemical 
cross-linkers and additives. Kumar–Seera also synthe-
sized microcrystalline hydrogels that were copolymer-
ized with cellulose and polyvinyl alcohol using both 

physical and chemical cross-linking techniques [83]. 
They report that physical cross-linking was achieved 
through freeze–thawing, whereas chemical cross-link-
ing was ensued by ethylene glycol diglycidyl ether as 
a cross-linker.

Starch is a frequently occurring biodegradable 
polymer comprising of a mixture of amylose and 
amylopectin. Its popularity stems from its low-cost, 
biocompatibility, straightforward production, abun-
dant availability, non-toxicity, and biodegradable 
nature [86]. However, unmodified starch has poor 
thermal and mechanical characteristics and it easily 
absorbs water (which is a good characteristic for use 
in SAPs, but not for other uses), making it unsuitable 
for direct use [87]. To address these issues, starch must 
undergo genetic, enzymatic, physical, and chemical 
modifications. Depending on the application, starch/
carboxymethylcellulose SAPs may offer a low-cost and 
superior alternative to pure cellulose derivative-based 
gels. Another method used to introduce physical 
cross-linking is electron beam irradiation [88, 89]. Over 
the years, starch/carboxymethylcellulose SAPs have 
been synthesized through gamma irradiation in aque-
ous mixtures of starch and carboxymethylcellulose 
[90–94]. Fekete and colleagues synthesized a super-
absorbent polymer using gamma irradiation, with 

Figure 4  Top: The schematic representation of the synthesis of 
carboxymethylcellulose/polyacrylamide composite. Bottom Left: 
The SEM image of carboxymethylcellulose. Bottom Right: The 
SEM image of the carboxymethylcellulose/polyacrylamide com-
posite. Reprinted from J. Hazard. Mater., 364, Godiya, C. B.; 

Cheng, X.; Li, D.; Chen, Z.; Lu, X., Carboxymethyl Cellulose/
Polyacrylamide Composite Hydrogel for Cascaded Treatment/
Reuse of Heavy Metal Ions in Wastewater, 28–38, Copyright 
(2019), with permission from Elsevier.
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starch partially replacing carboxymethyl cellulose 
(CMC). Substituting CMC with starch enhanced the 
gel fraction and water uptake, but excessive amounts 
of starch had a detrimental effect on gelation. The 
optimal hydrogel composition contained 30% starch, 
exhibiting excellent properties such as a water uptake 
of approximately 350 g/g. Research by Czarnecka and 
Nowaczyk resulted in the production of starch hydro-
gels cross-linked with acrylic monomers. For this 
series of SAPs, absorption capacity was represented 
in gel percentage (gel %). Maximum absorption for the 
SAPs varied between 18989–1547 gel % for deionized 
water and between 1047 and 2165 gel % for the saline 
solution [73]. Dispat and colleagues [95] synthesized 
a superabsorbent polymer for agricultural applica-
tion using modified starch. The starch was modified 
using zinc oxide and tetraethyl orthosilicate, then 
grafted with potassium acrylate monomer, resulting 
in improved reusability, biodegradability, soil condi-
tioning properties, and resistance to transient drought. 
Using gamma irradiation, SAPs were prepared from 
aqueous solutions of four cellulose derivatives, includ-
ing carboxymethylcellulose, methylcellulose, hydrox-
yethyl cellulose, and hydroxypropyl cellulose, using 
N-methylene-bis-acrylamide as a cross-linker. The 
swelling rate was highest in the first 5–6 h, then gradu-
ally decreased. Carboxymethylcellulose gels without 
a cross-linker reached equilibrium water uptake after 
24 h, while in the presence of a cross-linker, the water 
uptake almost reached equilibrium after 6–10 h [96]. 
Pourjavadi and colleagues observed pH-reversible 
behavior when they grafted polyacrylonitrile onto car-
boxymethyl cellulose using ceric ammonium nitrate as 
an initiator for free-radical polymerization [97].

Chitin is the second most abundant polysaccha-
ride in plant-based fungi and crustaceans [98–100]. 
Chitosan is a derivative of chitin and is formed from 

the deacetylation of the N-acetyl group of chitin, 
ultimately obtaining free amine side groups (see 
Scheme 1) [98, 101]. When the degree of deacetylation 
is greater than 50%, the chitin derivative is referred to 
as chitosan [105]. Cheng and colleagues have reported 
that complete deacetylation of chitin to chitosan with 
microwave and conventional heating methods is 
impossible [102]. On the contrary, Sivashankari and 
colleagues reported 100% chitin deacetylation in 50 
w/w% sodium hydroxide for 48 h at 100 °C and 82% 
deacetylation when the reaction was left for one hour 
[103]. Additionally, a longer reaction time results in 
chain degradation of the chitosan-chitin, as indicated 
by the lower molecular weight of the product after 
48 h reaction time. Both chitin and chitosan may be 
modified and used as raw materials to obtain biode-
gradable, biocompatible, low-cost biopolymers for 
use in, e.g., SAPs. Using pure chitosan in SAP syn-
thesis favors both human health and the environ-
ment. Chitosan is derived from a renewable source 
and has antibacterial properties [104–107]. Although 
biopolymers like chitosan have low ductility, they 
possess superior mechanical and degradation proper-
ties. A lower degree of deacetylation of chitosan leads 
to better mechanical properties. Heating an aque-
ous chitosan solution above its critical temperature 
(42.5 °C) can create an elastic and thermo-reversible 
gel [108]. Higher concentrations of chitosan require 
lower temperatures for gelation. This gelation pro-
cess destroys the solvated chitosan structure, which 
exposes hydrophobic regions and leads to the forma-
tion of hydrophobic aggregates. A chitosan starch cit-
rate cross-linked polymer demonstrated a high capac-
ity for absorbing water in both aqueous and saline 
environments [98]. The presence of amino (–NH2) 
and carboxyl (–COOH) groups in the chitosan back-
bone makes it a potential candidate for the synthesis 

Scheme  1  General schematic diagram for the deacetylation of 
chitin N-acetyl groups to chitosan [113].  Adapted from Macro-
mol. Res., 23, Park, J. P.; Koh, M.-Y.; Sung, P. S.; Kim, K.; Kim, 

M. S.; Lee, M. S.; Shin, E.-C.; Kim, K. H.; Lee, H., Inactivation 
Efficiency of DNA and RNA Viruses during Chitin-to-Chitosan 
Conversion, 505–508.
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of SAP. These functional groups in the structure make 
it easy to perform graft polymerization of hydrophilic 
vinyl monomer chains onto the chitosan, resulting in 
the efficient synthesis of biodegradable SAPs/hydro-
gels. Chitosan SAPs can be produced via coagulation 
in an alkaline medium, which reduces the repulsion 
of the –NH3+ functionalities on the different chitosan 
chains [109, 110]. Adding the hydrophobic cross-linker 
β-glycerophosphate during chitosan hydrogel forma-
tion creates a favorable environment for gel structure 
formation [111, 112]. This results in increased pH and 
ionic strength of the chitosan solution, which reduces 
electrostatic repulsion and enhances polymer–poly-
mer hydrophobic interactions.

Superabsorbent hydrogels prepared from cassava 
starch, acrylic acid, and chitosan/cellulose nanocom-
posites exhibited improved swelling capacities [114]. 
The maximal swelling capacity of these polysaccha-
ride-based hydrogels reached 767 g/g in urea solution, 
compared to the dry weight [115]. The degree of cross-
linking affects both the swelling capacity and absorp-
tion rate of these hydrogels, with a high cross-linking 
percentage making the polymer more rigid but less 
prone to swelling [73]. The presence of hydrophilic 
chains in the hydrogel’s backbone and the ioniza-
tion of carboxyl groups at higher pHs contribute to 
the improved water absorbency of these hydrogels. A 
superabsorbent hydrogel made from chitosan-graft-
poly(acrylic acid) [CT-PAA] and rice husk ash (RHA) 
was synthesized and studied for its swelling behavior 
in solutions of varying pH (2–12). The swelling and the 
deswelling response were highly sensitive to the pH of 
the solution [116]. As the pH level rose from 2.0 to 8.0, 
the hydrogels displayed a rise in water absorbency. 
However, water absorbency began to decline beyond a 
pH level of 8.0. At an optimal pH level of 8.0, the water 
uptake for CTS-graft-PAA/RHA calcined at 900 ◦C and 
CTS-graft-PAA were observed to be 64 g/g and 46 g/g, 
respectively. The difference in water uptake between 
the two hydrogels indicates incorporating RHA into 
the CTA-PAA enhanced the hydrogel’s absorption 
property. Furthermore, modifying chitosan-based 
superabsorbent hydrogel by adding hydrophilic pol-
yacrylamide chains resulted in a higher water reten-
tion capacity and swelling percentages of 1897.2%, 
1507.1%, and 1432.2% after 50 h [117].

A new superabsorbent composite with exceptional 
swelling capabilities was created through graft copo-
lymerization of partially neutralized acrylic acid 
onto a sodium alginate backbone in the presence of 

organo-loess [118]. Loess is a naturally occurring min-
eral consisting of finely ground dust or silt. It is cre-
ated by glaciers grinding rocks into fine powder or 
by wind carrying dust particles [119–121]. Over time, 
this sediment forms an inorganic mineral composed of 
carbonates and silicates, which contain reactive groups 
on its surface. Loess has hydrophilic properties that 
can enhance network structure and absorptive capac-
ity [118]. The composite’s water absorption capacity 
was remarkable, with a maximum equilibrium absor-
bency of 656 g/g in distilled water and 69 g/g in a 0.9 
wt% NaCl solution. Additionally, the superabsorbent 
composite displayed excellent pH buffer ability in the 
range of 4 to 10 and could retain water effectively. 
However, the current production of bio-based prod-
ucts, which primarily relies on first-generation feed-
stocks such as corn, sugarcane, and rapeseed, poses 
ethical and environmental concerns by competing 
with the food and feed industry. Hence, much effort 
is being put into using lignocellulosic feedstocks (non-
food crops or second-generation), which is a more 
attractive option as it is the most abundant and renew-
able resource on earth.

A novel SAP was created by cross-linking ligno-
sulfonate, sodium alginate, and konjaku flour, which 
exhibited a maximum water absorption capacity of 
41.23 g/g [122]. A lignin-based SAP is produced using 
lignin alkali polymers and poly(ethylene glycol) digly-
cidyl ether in an alkali solution [123]. The SAP has a 
water swelling capacity of 34 g/g dry weight in dis-
tilled water. Biodegradability and phytotoxicity tests 
reveal that 6.5% of the SAP mass decomposed after 
40 days of incubation in a soil solution. Lignin-PVA 
SAPs are prepared from lignin, PVA, and epichloro-
hydrin as the cross-linker and these SAPs can swell up 
to 456 g/g under mild conditions [124].

Hybrid polymers

Cross-linked petroleum-based polyacrylate and poly-
acrylamide SAPs demonstrate the highest absorp-
tion capacity, while polyacrylamides also display 
some degree of salt resistance due to their nonionic 
nature [13, 125]. As a result, these synthetic SAPs are 
still highly favored for commercial applications, but 
their drawback is that they are non-biodegradable 
and sometimes non-biocompatible. Naturally gener-
ated SAPs based on polysaccharides are more envi-
ronmentally friendly owing to their better biodegra-
dability and biocompatibility, but they have low water 
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absorption capacities compared to petroleum SAPs. 
Therefore, hybrid SAPs comprised of a natural poly-
saccharide and a synthetic monomer have recently 
gained attention as a potential mitigation strategy for 
the above-mentioned shortfalls of both synthetic and 
natural SAPs [126, 127].

There have been successful reports in the water 
purification industry for the application of hybrid 
SAPs as absorbents. Godiya and colleagues synthe-
sized a hybrid carboxymethyl cellulose (CMC) cross-
linked with a polyacrylamide (PAM) monomer for the 
absorption of heavy metals for wastewater treatment 
(Fig. 4) [128]. The hybrid SAP displayed an affinity for 
divalent copper, lead, and cadmium ions. The absorp-
tion process at equilibrium was attributed to both the 
Langmuir adsorption model and pseudo-second-order 
kinetics. The absorbed copper ions were reduced and 
then successfully applied as catalysts for the reduction 
of 4-nitrophenol to 4-aminophenol. Some hybrids con-
sist of an inorganic–polysaccharide mixture, and the 
inorganic functionality is typically silica  (SiO2) [129, 
130]. Panao and colleagues synthesized hybrid SAPs 
composed of an alginate polysaccharide cross-linked 
with polyacrylate and polyacrylamide monomers 
[129].  SiO2 microspheres were π-bonded to the SAPs, 
and these SAPs exhibit exceptional water absorption 
capabilities of 889.76 ± (12.65) per gram of dry poly-
mer. The superabsorbent properties of the polymers 
are primarily influenced by the surface charge of the 
microspheres and the chemical composition of the 
polymer, which collectively contribute to the crea-
tion of a highly hydrophilic structure. The SAPs were 
applied in methylene blue absorption. At equilibrium, 
the adsorption process was correlated to the Langmuir 
model, suggesting chemisorption due to electrostatic 
interactions being the primary mode of absorption. 
Chen and colleagues reported a hybrid SAP with pol-
yacrylic acid and silica nanoparticles with a superior 
water absorption capacity of 5000 g/g in deionized 
water, which is admirable as most SAPs do not absorb 
more than 3000 times their weight [130]. Other com-
posites comprise of organically produced monomers 
such as citric acid and itaconic acid [131, 132].

Modes of SAP formation

Effective absorption of aqueous solutions requires 
a highly cross-linked network. Either physical or 
chemical methods can achieve this cross-linking. 

Physical methods include ionic interactions, hydro-
gen bonding, hydrophobic bonding, and the entan-
glement of polymer chains without a chemical 
cross-linker [14, 127]. The absence of cross-linkers in 
physical cross-linking methods maintains the natural 
polymer’s low toxicity and biocompatibility, thereby 
preserving their benefits. However, the drawback of 
physical methods is that they produce SAPs whose 
cross-linking is reversible, thus making them unsta-
ble, whereas chemical cross-linking is permanent 
[127]. Therefore, chemical cross-linking is the pre-
ferred alternative due to the production of stable and 
resistant polymers. Physical cross-linking involves 
physical interaction between monomers and the 
polymer macromolecule, and chemical cross-linking 
involves the formation of new covalent bonds [127]. 
Chemical cross-linking is typically categorized into: 
solution radical graft polymerization, inverse sus-
pension polymerization, microwave polymerization, 
and non-radical polymerization [14, 127, 133].

Solution radical graft polymerization

The most widely used method for chemical cross-
linking involves free-radical graft polymerization 
(see Scheme 2), which takes place in an aqueous 
medium, and the SAPs are prepared from four main 
components: (1) polysaccharide macromolecule, (2) 
monomer, (3) initiator, and (4) a cross-linker [134]. 
During this process, the initiator is exposed to heat 
or radiation and decomposes to form free radicals 
[133, 135]. The radicals further react with water to 
form hydroxyl radicals. These hydroxyl radicals 
extract hydrogen atoms from the functional groups 
(hydroxyl, carboxyl) on the polysaccharide macro-
molecule forming reactive oxygen atoms. Ultimately 
the initiator creates reactive free radicals on the 
macromolecule and monomer that lead to grafting 
[133]. Cross-linking is then initiated by a chemical 
cross-linker such as N,N′-methylenebisacrylamide 
(MBA). Cross-linking can also occur without using 
a chemical cross-linker, depending on the type of 
polysaccharide and its functional groups [14, 135]. 
Upon addition of the initiator, the reaction generally 
increases, and this temperature elevation facilitates 
the creation of active sites on the monomers and 
macromolecule backbone [134–136].
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Scheme  2  General schematic representation for superabsorbent 
polymer formation using cellulose as the reference polysac-
charide [14, 135]. Reprinted from Waste Biomass Valor., 11, 
Abou-Baker, N. H.; Ouis, M.; Abd-Eladl, M.; Ibrahim, M. M., 

Transformation of Lignocellulosic Biomass to Cellulose-Based 
Hydrogel and Agriglass to Improve Beans Yield, 3537–3551, 
Copyright (2020), with permission from Springer Nature.
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Inverse‑phase suspension polymerization

Similar to radical graft polymerization, the process of 
inverse-phase suspension polymerization is comprised 
of a (1) polysaccharide macromolecule, (2) initiator, 
(3) monomer, and a (3) cross-linker [137]. However, 
in graft polymerization, the reaction occurs solely 
in an aqueous medium [14, 133, 134]. Inverse-phase 
suspension polymerization is a type of polymeriza-
tion process that involves the formation of polymer 
particles in an immiscible liquid phase, which is dis-
persed as droplets in a continuous organic phase [14, 
138]. Typically, in this process the monomer, cross-
linking agent, and the initiator are dissolved in the 
aqueous phase and the surfactant is dissolved in the 
organic phase. The aqueous phase is continuously to 
the organic phase containing the surfactant (stabilizer) 
which prevents the droplets’ coalescence and leads to 
a stable suspension [14, 139].

During the polymerization reaction, the monomer 
molecules diffuse from the non-aqueous phase into the 
aqueous phase and react with the initiator to form pol-
ymer chains. As the polymerization proceeds, the pol-
ymer chains grow and eventually form solid polymer 
particles within the non-aqueous droplets [140–143]. 
Inverse-phase suspension polymerization has several 
advantages over other polymerization processes, such 
as high reaction rates, good control of morphology 
particle size, and the ability to produce particles with 
a wide range of compositions and properties [144]. 
It is commonly used for the production of polymer 
particles for applications such as coatings, adhesives, 
and biomedical materials. One disadvantage is that the 
removal of surfactants and organic solvents from SAPs 

can be quite difficult, requiring extensive washing and, 
in some cases, purification through heat application 
[14, 144–146]. If not adequately removed, they may 
be toxic, thus rendering the “biocompatibility” of the 
polysaccharide polymer null and void. Furthermore, 
research done by Sand and colleagues on poly(itaconic 
acid)-based SAPs by inverse suspension polymeriza-
tion found that the water absorbency of the prepared 
SAP particles depended on the washing solvent used 
to remove the surfactant [146]. Higher water content 
in the washing solvent resulted in greater absorbency, 
with 5 g/g for 100% ethanol and 14 g/g for a 50:50 mix-
ture of ethanol and water. Less polar solvents caused 
the pores in the SAP particles to collapse (see Fig. 5 
for SEM images), leading to lower absorbency val-
ues, while washing with water alone caused particle 
aggregation and difficulty in obtaining the product in 
powder form.

Microwave‑assisted polymerization

Microwave-assisted polymerization is another tech-
nique that generates free radicals during the polym-
erization process. Unlike suspension and solution 
radical graft copolymerization, where a chemical ini-
tiator is added, the free radicals in microwave-assisted 
polymerization are generated by thermal irradiation 
of the monomers and macromolecules [147]. However, 
Azad and colleagues reported microwave-assisted 
polymerization by adding small amounts of chemi-
cal initiator (ammonium persulfate) [148]. In another 
paper, Azad and colleagues reported a series of poly-
mers synthesized by free-radical graft and microwave 
polymerization. The microwave synthesis resulted 

Figure 5  The SEM micrographs illustrating the effect of wash-
ing the particles with a pure ethanol and b 50:50 ethonal: water 
[149]. Reprinted from Fibers Polym., 22, Sand, A.; Shin, N. J.; 
Nam, H. G.; Kwark, Y. J Effects of Reaction Parameters on Water 

Absorption of Poly(Itaconic Acid) Superabsorbent Particles Syn-
thesized by Inverse Suspension Polymerization, 898–903, Copy-
right (2021), with permission from Springer Nature.
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in more desirable properties such as shorter reac-
tion time, higher absorption capacity, and centrifuge 
retention capacity [149–151]. A bio-composite SAP was 
synthesized using both microwave and conventional 
radical graft polymerization methods. The optimized 
reaction conditions indicated that the microwave 
approach achieved a high degree of grafting (%G), 
exhibited superior swelling properties, and reduced 
the polymerization reaction time compared to the 
optimized conventional method [150]. In the conven-
tional method, the optimal time was determined to 
be 70 min, whereas the microwave method only took 
approximately 12 min. The maximum equilibrium 
swelling capacity achieved with microwave synthesis 
was around 1900 g/g, whereas the lowest was 1200 g/g. 
In another study, the use of a microwave method for 
surface cross-linking of poly(sodium acrylate)-based 
SAPs was investigated. The study used diglycidyl 
materials as surface cross-linking agents and N,N-
Dimethylaniline as catalysts. Results showed that the 
microwave method significantly reduced the surface 
treatment time from 3 h to 4 min [151].

Non‑radical polymerization

Free radical polymerization is a fast and easy method 
for producing superabsorbent polymers. However, 
controlling the formation of polymer network struc-
ture is challenging because the resulting network is 
often inhomogeneous; thus, the obtained polymer has 
decreased strength and absorption ability [98]. In non-
radical polymerization, free radicals are not formed 
during polymer formation. The role of a chemical and 
thermal initiator is to create active sites which allow 

the grafting of the monomer onto the macromolecule. 
Non-radical polymerization involves grafting without 
the need for creating radical active sites. Instead, cova-
lent bonds are formed between the reactive functional 
groups, such as carboxyl, hydroxyl, and amine, on the 
monomers and the polysaccharide macromolecules. 
The Michael addition polymerization is a non-radical 
polymerization process that is strongly influenced by 
reaction conditions such as temperature and mono-
mer concentration (see Scheme 3) [152–155]. Sashiwa 
and colleagues reported a Michael addition reac-
tion, where an acrylic acid monomer was grafted 
on a chitosan polysaccharide [152, 156, 157]. Porous 
polymers were synthesized using Michael reactions 
of multifunctional acrylate and bifunctional com-
pounds in DMSO [155]. In this reaction, the reaction 
conditions were altered by varying the reaction tem-
perature (20–50 °C), the concentration of the monomer 
(20–25 wt%), and the ratios of two macromolecules, 
trimethylolpropane propoxylate triacrylate (TPT) and 
hexamethylene diamine (HDA). The porous structure 
formation was controlled by the reaction conditions, 
with connected globules or co-continuous monolithic 
structures being formed. The TPT-HDA porous poly-
mer absorbed various solvents, particularly  CHCl3, 
and showed color variation based on reaction time and 
temperature. Thio-Michael reactions of TPT-HDT in 
DMSO with a photobase catalyst yielded porous poly-
mers under specific conditions with controlled porous 
structures. It is reported that Michael addition reaction 
may lead to uncontrollable polymerization, so Fujita 
and colleagues conducted thermal and kinetic anal-
yses experiments using an acrylic acid monomer to 
gain more understanding. The GPC analysis exposed 

Scheme  3  Non-radical polymerization of chitosan by the 
Michael addition reaction [156].  Adapted from Macro-
mol. Biosci., 3, Sashiwa, H.; Yamamori, N.; Ichinose, Y.; Suna-

moto, J.; Aiba, S., Chemical Modification of Chitosan, 17, 
231–233 Copyright (2003), with permission from WILEY–VCH 
Verlag GMbH & Co. KGaA, Weinheim.
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that the products of Michael addition reaction were 
dimers, trimers, and tetramers, with a conversion 
rate of 82%. The kinetic analysis discovered that the 
Michael addition reaction had an order of 2.5, and the 
overall reaction rate constant was k = 3.52 ×  103 × exp 
(− 1.18 × 105/T [K])  L1.5  mol−1.5  s−1 [158]. In another 
study, the impact of kinetic parameters on the over-
all reaction rates of base-catalyzed Michael reactions 
was evaluated using kinetic models [159]. The analysis 
was conducted on eight ternary thiol-Michael systems 
consisting of thiol–acrylate–vinyl sulfone and 1-thiol 
2-vinyl. The model predicted the kinetic paths for the 
reaction and accompanying polymerization and indi-
vidual parameters for propagation and chain transfer 
steps. Finally, the model was validated for network-
forming polymerizations. The results provide guid-
ance for selecting monomers to design thiol-Michael-
based polymers with desired kinetic properties and 
material characteristics.

Cross-linking of SAPs can be achieved through 
physical or chemical methods, and Table 2 outlines 
the key distinctions between the two.

Table 3 lists the various advantages and disadvan-
tages for the above mention polymerization methods.

A computational approach to polymer 
formation

All the SAP formation techniques mentioned above 
have their advantages, but they also have their draw-
backs. In polymer chemistry, researchers mainly 
use a time- and resource-consuming trial-and-error 

approach to develop new polymer products. Many 
experimental conditions must be tested to discover 
the most optimal conditions for obtaining SAPs with 
desirable properties. Computational chemistry tech-
niques such as central composite design (CCD) have 
an enormous potential in developing cross-linked 
polymer networks with desirable properties in shorter 
times and with minimal experimental resources. RSM 
(response surface methodology) is a statistical method 
for improving experimental efficiency and obtaining 
optimal results while minimizing trial-and-error labo-
ratory experimentation, which can be costly [173–176]. 
CCD is the most extensively used RSM approach to 
date. Kown and colleagues used a computational 
technique (response surface methodology-central 
composite design (RSM-CCD)) to determine optimum 
conditions for cross-linking a bio-based SAP using ita-
conic acid as the monomer [175]. Their calculations 
considered the type of cross-linker, the amount and 
the reaction time. The conditions most effective for 
chemical cross-linking are: a reaction temperature of 
160 °C, 2.22 mol % chemical cross-linker, and 8.7 min 
of reaction time.

Moreover, Yilmaz and colleagues report a supera-
bsorbent polymer composed of poly(acrylic acid/
kryptofix 23-dimethacrylate) was synthesized to treat 
a variety of toxic metals (Co, Ni, Cu, Cd, Mn, Zn, Pb, 
Cr, and Fe ions) in wastewater [177]. Computational 
tools were also utilized to gain additional insight into 
the SAP’s geometry and absorption factors, including 
ΔHf

0 (heat of formation), d (bond length), φ (internal 
rotational angle), Estr (strain energy), ℓ (lengths of the 
repeating unit of the polymer chain), and ΔE (internal 

Table 2  A comparison between physical and chemical cross-linking

Chemical cross-linking Physical cross-linking

Mode for cross-linking Covalent bonds are formed between polymer chains 
due to a chemical agent

Repeated freezing and warming cycles induce physical 
cross-links

Cross-linking agents Chemical cross-linker is needed to facilitate the 
chemical reaction

Typically, no chemical cross-linker is required

Degree of cross-linking The degree of cross-linking is dependent on the con-
centration of the cross-linking agents

Degree of cross-linking depends on the number of 
freeze–thaw cycles

Reaction time Shorter reaction time, as chemical reactions occur 
relatively quickly under appropriate conditions

Longer reaction time due to the need for multiple 
freeze–thaw cycles

Energy consumption Energy may be required for heating or maintaining 
reaction temperatures

Requires energy for maintaining freezing and heating 
conditions

Mechanical properties Often provide a wider range of mechanical properties, 
including variations in hardness and elasticity

Often results in softer and more elastic gels compared 
to chemically cross-linked counterparts
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barrier energy) of stable conformations of the cross-
linker and superabsorbent. Quantum chemical calcu-
lations were performed using Assisted Model Build-
ing with Energy Refinement (AMBER), molecular 
mechanic (MM2), and optimized potentials for liquid 
simulations (OPLS) for conformational analysis. The 
computational data indicated that the internal cavity 
radius of the polymer was 6.8928 Å, which could pre-
dict the absorption of metals and molecules by the pol-
ymer based on their size without the need for physical 
experimentation. The OPLS method’s lowest ΔE val-
ues also suggested that the SAP was more flexible in 
liquid reaction medium simulations. Figure 6 depicts 
the optimized structure of the polymer as determined 
by molecular mechanic (MM2) modeling.

Other computational tools, such as density func-
tional theory (DFT) and computational molecular 
design (CMD), aid in the mechanistic understanding 
and structure optimization of macromolecules [178, 
179]. The obtained information provides insight into 
the macromolecular physical and structural proper-
ties, which ultimately affect the materials’ behavior 
when exposed to certain stimuli. Since most plastic 
applications require long-lasting materials, synthesiz-
ing durable bio-plastics has become a key commercial 
objective. Biomass chemicals with high hydrocarbon 
content, such as terpenes found in the resin of conifer 
trees, have gained significant attention as potential 

alternatives for developing new polymers [180]. The 
primary component of tree resin, α-pinene, consists 
of hydrocarbon molecules with stereo-complexity 
and unsaturated moieties that can undergo olefin 
polymerization. The δ-pinene monomer is made from 
α-pinene through a metal-free three-step synthesis 
process. Yarolimek’s research provides experimental 
and NMR data indicating that δ-pinene can be polym-
erized through ring-opening metathesis, a mechanism 
supported by DFT calculations revealing a ring strain 
energy of (∼ 35 kJ  mol–1).

The utilization of mixtures containing SAPs and 
cement-based materials has become increasingly 
popular in commercial applications due to the SAPs’ 
ability to reduce water flow through the cracks found 
in cement-based products. As a result, Rodríguez and 
colleagues developed a mathematical lattice network 
model that examined water absorption in cement mor-
tars in the presence and absence of SAPs [181]. The 
reduction of water flow in SAP-cement composites 
is believed to be due to the SAPs’ capacity to absorb 
water and expand within the cracks, although there 
has been little research to confirm this hypothesis. 
Diffusion-controlled mode was utilized for the swell-
ing kinetics of SAPs to simulate their water absorption 
during sorptivity testing in mortars. This model is a 
numerical model that describes the swelling kinetics of 
a SAP particle, suggesting that swelling is governed by 

Figure  6  The optimized structures of poly(acrylic acid/krypto-
fix 23-dimethacrylate) SAP as determined by the molecular 
mechanic computational method [177]. Reprinted from M. Mate-
rials (Basel)., 13, Savaskan Yilmaz, S.; Yildirim, N.; Misir, M.; 
Misirlioglu, Y.; Celik, E., Synthesis, Characterization of a New 

Polyacrylic Acid Superabsorbent, Some Heavy Metal Ion Sorp-
tion, the Adsorption Isotherms, and Quantum Chemical Inves-
tigation, 1–23, Copyright (2020), with permission from MDPI 
Molecules.

6153



 J Mater Sci (2024) 59:6138–6168

a diffusion process and Esteves validated this by meas-
uring the change in diameter of a SAP overtime [181, 
182]. While the simulated and experimental data did 
not align perfectly, the general behavior of the curve 
was captured in the simulations, thus validating the 
law’s suitability for describing the water uptake of 
SAPs incorporated into a cementitious matrix.

Machine learning is a CMD technique fast gaining 
popularity in chemistry because of its potential to fast-
track the discovery and design of innovative materials. 
Using machine learning-assisted methodology, Kondo 
and colleagues discovered a series of new polymers 
with the desired high thermal conductivity [183]. They 
used an algorithm to recognize quantitative properties 
relating to structure, thermal conductivity, and other 
targeted polymeric properties. From this, thousands of 
possible hypothetical polymers were generated, and 
based on ease of processing and synthetic accessibility, 
only three were selected for synthesis. The synthesized 
polymers achieved thermal conductivity between 0.18 
and 0.41 W/mK, and these values are similar to some 
high-end commercial polymers. The ability to predict 
the performance of SAPs using computational or theo-
retical chemistry is a significant advantage for com-
mercial manufacturers.

From the above, it is evident that it is worthwhile 
for polymer scientists to consider incorporating com-
putational chemistry in their research as it is a prom-
ising predictive tool that can minimize trial-and-error 
experimentations and ultimately reduce operational 
costs [184, 185].

Factors affecting absorption/swelling

The swelling kinetics of a SAP refers to the quantity 
of liquid it can absorb over time, while its retention 
capacity represents the maximum amount of liquid 
that the hydrogel can chemically retain when surface 
water has been removed [133, 149]. Factors such as 
particle size, solution pH, ionic strength of saline solu-
tion, and degree of cross-linking may affect swelling 
capacity, kinetics, and retention [186, 187].

Ionic strength and pH stability

Examining the durability of SAPs across different 
pH levels and saline environments represents a sig-
nificant aspect of the synthesis of SAPs. The difference 
in osmotic pressure inside and outside of the SAP is 

the driving force for solution absorption. Therefore, 
increasing the amount of cations  (Na+) in the sur-
rounding SAP solution by adding NaCl lowers the 
osmotic pressure and thus reduces the absorption 
capacity [160]. Thus maximum absorption occurs 
with deionized water and the lowest with a saline 
solution [73, 188, 189]. For the practical application 
of SAPs in hygiene products like diapers and sanitary 
pads, it is crucial to consider the ionic strength of the 
solutions for which they will be used. These solutions 
have higher ionic strength compared to deionized 
water, so it is essential to test SAPs under such condi-
tions. The sensitivity of SAPs to the ionic strength of 
a solution is generally tested in a 0.9% NaCl solution 
which correlates to the salt concentration of urine. 
Peng and colleagues reported a starch-based SAP with 
maximum absorption of 1493.1 g/g in deionized water 
and a reduced absorption of 91.0 g/g in saline [190]. 
In another study, Zhao and colleagues introduced a 
Sulfamic Acid-Modified Starch with “salt-tolerant” 
properties, which exhibited better absorption of saline 
solutions than previously reported starch SAPs [191]. 
However, despite the improvement, the SAP’s absorp-
tion capacity was still lower in saline solution (145 g/g) 
compared to deionized water (1026 g/g). The term 
“salt-tolerant” is used to describe the SAPs because 
the sulfamic acid-modified SAP exhibits an improved 
water absorption capacity in the presence of salt solu-
tions compared to starch-grafted acrylic acid SAPs. 
Figure 7 illustrates the reduction in absorption capa-
bility of several starch-based SAPs when exposed to 
saline solution relative to their performance in deion-
ized water.

The decrease in absorption capacity in saline is not 
exclusive to starch- or bio-based polymers. Xu and col-
leagues reported a group of sodium polyacrylate–pol-
yacrylamide SAPs that also decreased in absorption 
capacity in saline solutions. The SAPs had a maximum 
absorption of 1954 g/g in deionized water and 115 g/g 
in 0.9% saline solution [38]. From the above, it is evi-
dent that ions in solution hinder the absorption capac-
ity of SAPs.

Moreover, Czarnecka and colleagues postulate 
that SAPs exhibit a charge screening effect, result-
ing in decreased absorption of solutions [73]. Con-
sequently, salt solutions containing polyvalent/ mul-
tivalent cations reduce the absorption of the SAP to 
a greater extent than those with univalent cations. 
Ultimately, the presence of these ions triggers ionic 
cross-linking of the polymer, leading to a significant 
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reduction in SAP absorption. Consequently, a rise 
in the concentration of salt ions in the solution will 
further reduce the absorption capacity. This is dem-
onstrated by comparing the absorption of tap water 
to that of saline solution, which contains more con-
centrated free ions. Therefore, increasing the sodium 

concentration to the level found in blood (3.2 mg/
mL, equivalent to ~ 0.32%) would result in an even 
greater decrease in the SAP’s absorption capacity. 
Hence, while developing SAPs for sanitary products, 
it is crucial to produce products that are resistant to 
salt, as the presence of ions in blood and urine can 

Figure  7  Graphical representation of absorption capacity of a 
series of acid-treated starch SAPs in deionized water versus 0.9% 
saline solution [191]. Reprinted from ACS Omega, 4, Zhao, C.; 
Zhang, M.; Liu, Z.; Guo, Y.; Zhang, Q Salt-Tolerant Superab-

sorbent Polymer with High Capacity of Water-Nutrient Retention 
Derived from Sulfamic Acid-Modified Starch, 5923–5930, Copy-
right (2019), with permission from American Chemical Society.
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impact the absorption capacity, which can directly 
impact the consumer.

Studies show that the pH of the surrounding envi-
ronment also affects the water absorption capacity of 
SAPs. Typically, the impact of pH on both the water 
absorption and structure of SAPs is evaluated by 
immersing the dehydrated SAPs in solutions with the 
same ionic strengths with different pH levels. Gener-
ally, maximum water absorption occurs at alkaline pH 
levels ranging between 6 and 10 [187, 189, 192, 193]. 
In their research, Adair and colleagues examined how 
fluids with pH values ranging from 4 to 10 affect the 
water absorption capacities of SAPs. Their findings 
show that the absorption capacity of SAPs is affected 
by pH values, with the highest absorption capacity 
observed at a pH solution of 8 (382 g/g). When the 
pH level of the surrounding medium is acidic, the 
polymer’s anionic carboxylate groups become proto-
nated by the dissociated hydrogen atoms produced 
from the acid [186]. This induces hydrophobic effects 
on the polymer, resulting in a decrease in its swelling 
capacity.

Similarly, when the pH levels are basic, the swell-
ing capacity of the polymer is decreased due to an 
excess of cations, which reduces the osmotic pressure 
required to transport liquid into the polymer [192]. 
The normal blood pH level is approximately 7.4, 
within the range of maximum absorption for most 
SAPs [194, 195]. For application in sanitary products, 
factors like lifestyle, disease, and food may alter a per-
son’s blood and urine pH, thus affecting the absorp-
tion capacity negatively or positively depending on 
the individual’s overall pH.

Kinetics and particle size

During the swelling process, the water molecules per-
meate the polymer by diffusion and capillary forces 
and it has been reported that smaller particle sizes 
have a faster absorption rate for water molecules 
[187]. In adsorption, smaller particles tend to have a 
larger surface area, leading to faster and larger uptake 
of gases and solutions [196–198]. Fort and colleagues 
reported absorption values for three commercially 
available SAPs with varying average particle sizes; 
Creaorb ( 63 µm), Cablock (291 µm), and Hydropam 
(526 µm) [187]. Cablock had the highest reported 
absorption value of around 250 g/g, and Hydropam 
had a value of 75 g/g. Initially, the fastest absorption 
was found for Creasorb due to its particle size, but it 

was retarded by the internal resistance of liquid trans-
portation between the SAP particles. Additionally, if 
homogenization techniques are not employed, smaller 
particles tend to agglomerate, which may affect the 
kinetics. To investigate absorption kinetics, the tea bag 
method is the most popular technique [133, 160, 199, 
200]. However, these methods have limitations, such 
as overestimating absorption capacity and gel leak-
age into the surrounding solution. Therefore, in recent 
years, other methods, such as centrifugal and vessel 
filtration cloth (VFC), have been introduced [187, 199].

Degree of cross‑linking and monomers

The last step in SAP production involves attaching 
the monomer chain to the macromolecule with the 
help of a cross-linking agent to generate three-dimen-
sional networks [73]. Thus the degree of cross-linking 
and amount of monomer play a role on the absorp-
tion properties of SAPs. Typically, SAPs with a high 
degree of cross-linking have high gel strength but 
low absorption capacity [160]. This is because a high 
degree of cross-linking leads to a more rigid and com-
pact polymer, making it resistant to water uptake and 
as a result, less susceptible to swelling. Czarnecka and 
colleagues reported that increasing the concentration 
of the cross-linking agent reduces the swelling capac-
ity of the polymer [73]. Additionally, cross-linking is 
responsible for the insolubility of SAPs in water and 
other aqueous solutions [46]. Regarding desorption, 
highly cross-linked SAPs exhibit a faster rate of liq-
uid desorption compared to those with fewer cross-
links, as reported by Yun and colleagues [160]. This 
is because highly cross-linked SAPs possess stronger 
retraction forces, which compel the absorbed liquid 
to exit the SAP more forcefully than less cross-linked 
SAPs.

Research has shown that monomers added to bio-
degradable polymers (such as polysaccharide), play 
a significant role on the swelling capacity of a SAP. 
Some of the most popular monomers used are acryla-
mide and acrylic acid because they contain hydro-
philic functional groups  (CONH2 and –COOH), which 
are essential for the swelling properties of SAPs [201]. 
When the monomer is neutralized, free ions that con-
tribute to osmotic pressure are created, giving the 
polymer macromolecule a charge density. This facili-
tates water uptake, resulting in an increased swelling 
capacity of the SAP when the degree of neutralization 
is raised, assuming the level of cross-linking is fixed 
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[136, 148, 149, 192]. However, there is a limit to this 
effect; after a certain degree of neutralization, the free 
ions on the polymer backbone will no longer increase, 
even if the degree of neutralization continues to rise. 
Therefore, a maximum water absorption level will be 
reached, regardless of any further neutralization of the 
monomer. The optimum degree of neutralization is 
reported to be approximately 70% (see Fig. 8a) [138, 
149].

Furthermore, as with neutralization, there is a 
threshold beyond which an increase in added mono-
mer content leads to a decrease in water absorption. 
Reports suggest that the optimal ratio of polysaccha-
ride to monomer is 1:10, see Fig. 8b. Exceeding this 
ratio results in a reduction in the absorption of both 
water and saline solutions [134, 138, 202]. Continu-
ously increasing the monomer beyond the absorp-
tion threshold increases the viscosity of the reaction 
mixture, hindering the movement of free radicals 
and monomers. Consequently, the probability of col-
lisions between the monomers and macromolecules 
decreases, leading to homopolymerization instead of 
graft polymerization.

Moving toward antibacterial/fungal 
and self‑cleaning sanitary products:

Vaginal flora and infections associated with it

Bacteria are classified as gram positive or gram nega-
tive; depending on the gram staining technique, they 

stain purple and pink, respectively, as shown in Fig. 9. 
Gram-positive bacteria possess a thick layer of pep-
tidoglycan and lack an outer lipid membrane, while 
gram-negative bacteria have a thin peptidoglycan 
layer and have an outer lipid membrane, which acts 
as an additional barrier [203]. Gram-negative bacteria 
secrete exo- and endotoxins, whereas gram-positive 
secretions are solely exotoxins (Fig. 10).

Vaginal flora consists of good and bad bacteria. 
External stimuli like pH may cause an imbalance, 
resulting in vaginal infections. The vagina contains 
a healthy balance of bacteria and fungi, with lacto-
bacillus being the “good bacteria” that prevents the 
overgrowth and invasion of other microorganisms 
by secreting hydrogen peroxide, lactic acid, and 
bacteriocin-liked substances [204–207]. Common 
symptoms of vaginal infections include itching, 
burning during urination, and an unpleasant odor. 
To minimize the risk of infection, it is clinically rec-
ommended that individuals frequently change their 
sanitary pads, tampons, and pantyliners. However, 

(a) (b)

Figure  8  Graph illustrating the influence of (left) the degree 
of neutralization of the monomers and b the cellulose: mono-
mer ratio on the swelling capacity of the SAP. Adapted from 
J. Polym., Guan, H.; Li, J.; Zhang, B.; Yu, X., Properties and 

Humidity Resistance Enhancement of Biodegradable Cellulose-
Containing Superabsorbent Polymer, 1–8, Copyright (2017), with 
permission from Hindawi [138].

Figure 9  A presentation of purple staining on gram-positive and 
pink staining on gram-negative bacteria.
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in underprivileged communities, women and girls 
cannot afford sanitary products, let alone change 
them frequently. As a result, this can have a detri-
mental impact on their lives and may occasionally 
be fatal. Some common infectious conditions caused 
by sanitary products include menstrual toxic shock 
syndrome (mTSS), bacterial vaginosis, and yeast 
infections.

The prolonged use of sanitary pads, pantyliners, 
and tampons creates a warm, sweaty environment, 
which are ideal conditions for the overgrowth of 
bacteria and fungi. This is defined as vaginal micro-
biota dysbiosis [205]. Vaginal yeast infections (can-
didal vulvovaginitis) and bacterial vaginosis occur 
when there is an overgrowth of fungus or bacteria, 
causing an imbalance in the vaginal flora. Gardnerella 
vaginalis is a gram-variable bacteria associated with 
bacterial vaginosis, and Candida albicans is the fungus 
associated with vaginal yeast infections [208, 209]. 
Although not fatal, vaginal candidiasis and bacte-
rial vaginosis symptoms make daily life uncomfort-
able [210]. Another disease that may occur due to the 
prolonged use of certain menstrual products is men-
strual toxic shock syndrome (mTSS). It is a rare but 
lethal bacterial disease characterized by rash, fever, 
skin shedding, and hypotension, leading to organ 
failure [211–213]. Exotoxins produced by gram-
positive bacteria cause the infection, Staphylococcus 

aureus and group A streptococci [211, 212]. Other 
groups of streptococci, particularly B, C, and G, are 
now suspected of causing rare streptococcal mTSS. 
This fatal disease is associated with the prolonged 
(> 6 h) insertion of intravaginal sanitary devices such 
as super absorbing tampons, menstrual cups, and 
UID, among others [214]. The disease is often mis-
diagnosed, and treatment is delayed, resulting in 
fatalities or patient hospitalization [215].

Natural‑based materials as a strategy 
for inducing antibacterial properties

From the above, it is clear that synthetic personal 
hygiene products may have detrimental effects on 
the end user. Hence, developing biocompatible san-
itary products with antibacterial and self-cleaning 
properties should be a social and health priority, 
especially in low-income households where women 
cannot afford essential sanitary products and health-
care when they develop infections. The personal 
hygiene industry is highly dependent on the produc-
tion of SAPs, and the most widely used SAP is petro-
leum-based sodium polyacrylate. In light of new 
research showing the detrimental effects of petro-
leum-based SAPs on the environment and human 
health, SAP research is moving toward a greener 
and more sustainable route. Some feminine hygiene 
products (tampons, sanitary pads, and pantyliners) 

Figure  10  Cartoon illustration of how light excites electron to 
the conduction band, which in turn creates reactive oxygen spe-
cies, which can decompose carbon-based compounds and micro-
organisms [229]. Reprinted from J. Phys. Chem. Lett., 5, Baner-

jee, S.; Pillai, S. C.; Falaras, P.; O’Shea, K. E.; Byrne, J. A.; 
Dionysiou, D. D., New Insights into the Mechanism of Visible 
Light Photocatalysis, 2543–2554, Copyright (2014), with permis-
sion from American Chemical Society.
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are marketed as 100% biodegradable and environ-
mentally friendly. Most are comprised entirely of 
organic fibers and do not contain SAPs. Thus, their 
liquid absorption and retention capacity are low 
[216]. Those with SAPs containing petroleum-based 
sodium polyacrylate incorporated within the organic 
fibers are not 100% environmentally friendly or bio-
compatible and may contain toxic chemicals.

Sun and colleagues reported the effects of using dif-
ferent types of pads on the inflammation and the flora 
of the vagina [217]. The study showed that using bio-
based sanitary pads like hemp can reduce a woman’s 
proneness to have reproductive tract infections by 
maintaining the balance of the vaginal flora. Some pol-
ysaccharides, such as chitin and chitosan, have natu-
ral antibacterial properties. Benhabiles and colleagues 
have reported that chitin is active against gram-pos-
itive bacteria, including Staphylococcus aureus and 
group A streptococci, associated with the fatal mTSS 
[218]. Chitosan is active against both gram-positive 
and gram-negative bacteria. It also has antifungal 
properties against Candida albicans; therefore, when 
it is incorporated into personal hygiene products, it 
has the potential to act against both bacteria and fungi 
[219]. Chitosan also has exceptional mucoadhesive 
properties and a safety profile, making it a promis-
ing candidate for enhancing localized vaginal therapy. 
Jøraholmen and colleagues conducted a study inves-
tigating the efficacy of chitosan-coated liposomes and 
chitosan hydrogel as drug carriers in the vaginal tract 
[220]. The study confirmed the antibacterial activity 
of these formulations against Staphylococcus epider-
midis and Staphylococcus aureus. Chitosan offers an 
added benefit of closely interacting with mucus, facili-
tating an effective contact time between the formu-
lation and the epithelial lining of the vaginal mucus 
[221]. This mucoadhesive property of chitosan also 
gives it the potential to be used in menstrual cups. 
Bfree Cup is an antibacterial menstrual cup made up 
of 100% medical-grade silicone; hence, it has no syn-
thetic chemicals or toxins [222]. Unlike conventional 
cups, the Bfree antibacterial cup does not need to be 
boiled between uses, its antibacterial property come 
from the physically created superhydrophobic surface 
of the cup, which is claimed to prevent the formation 
of a biofilm. It only requires rinsing and wiping. A 
similar alternative to the BCup is the ElleCup which 
is also reusable and is made up of 100% medical-grade 
silicone, this is not antibacterial but comes with anti-
bacterial spray.

Nanotechnology as a strategy for inducing 
antibacterial and self‑cleaning properties

Nanotechnology holds significant commercial pros-
pects in the context of making reusable sanitary prod-
ucts. It introduces a new idea of self-cleaning textiles, 
providing clean and fresh daily clothes. The antibacte-
rial and self-cleaning properties of these reusable sani-
tary products can be induced by fixating nanoparticles 
onto fabrics. Two primary methods exist for induc-
ing self-cleaning properties through nanotechnology, 
namely (1) dirt- and water-repellent materials as well 
as (2) photocatalytic degradation of organic matter 
[223].

With the first method, fabric fibers are given a pro-
tective coating by bonding nanoparticles to them and 
then attaching hydrophobic functionalities that can 
directly repel water, dirt, and bacteria to the nanopar-
ticles. This results in self-cleaning and antibacterial 
properties. The technique of inducing antibacterial 
properties on fabric involves fixating a metal oxide 
or metal nanoparticle photocatalyst onto the fabric 
[224–227]. This area of science can be used on the 
fabric of reusable sanitary pads to minimize possible 
infections. Generally, fixation is achieved by sol–gel or 
pad dry cure technique with a binder to ensure that 
the catalyst adheres to the fabric [223, 228]. When the 
coated fabric is exposed to light, photons with higher 
energy than the band gap of the photocatalyst trans-
fer electrons to the conduction band. The excited elec-
trons react with the oxygen atoms in the air, generat-
ing oxygen radicals. Unstable oxygen radicals react 
to decompose carbon-based compounds through oxi-
dation–reduction reactions, breaking down organic 
substances like dirt and microorganisms into safe sub-
stances such as carbon dioxide and water (see Fig. 11 
for the photocatalytic process). The metal oxide is only 
a catalyst and is not consumed during the reaction, 
enabling the coating to remove stains continuously as 
shown in Fig. 11.

Photocatalytic degradation of dye and pharma-
ceutical waste has been studied extensively in water 
purification. However, the application of this tech-
nique for cleaning textiles is still minimal. In a study 
conducted by Kavitha–Sankar, using antibacterial 
composites of cellulose pulp and silver nanoparticles 
(< 100 nm) in sanitary napkins were tested for bio-
logical safety. The testing included in vivo vaginal 
irritation, in vitro cytotoxicity, and intracutaneous 
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reactivity [230]. The cytotoxicity results showed that 
the silver nanoparticle incorporated cellulose is non-
cytotoxic, and no skin irritation was observed in the 
animal test subjects. These results indicate that the 
silver-cellulose composite has good biocompatibil-
ity, making it a safe hygiene product that meets the 
recommended standards. Another study used chi-
tosan from beetle exoskeletons to synthesize MgO 
and ZnO nanoparticles [231]. The ZnO nanoparti-
cles showed stronger antibacterial activity against 
gram-positive bacteria than gram-negative bacteria, 
while MgO nanoparticles showed the opposite trend. 
The findings show a synergystic effect between the 
chitosan polysaccharide and metal nanoparticles 
as antibacterial agents. Maghsoudi and colleagues 
aimed to develop a green synthesis method using 
Achillea millefolium plant extract to create ZnO NPs, 
Ag NPs, and Ag/ZnO nanocomposite with antibacte-
rial properties [232]. Antibacterial activity was tested 
against Pseudomonas aeruginosa, Escherichia coli, Bacil-
lus cereus, and Staphylococcus aureus, with the Ag/
ZnO nanocomposite showing the highest activity 
against E. coli. The nanocomposite also displayed 
better antibacterial activity than pure Ag and ZnO 
nanoparticles. Additionally, Ag/ZnO nanocompos-
ite-loaded cotton fiber showed strong antibacterial 
activity, even after multiple washes. This demon-
strates how nanotechnology can add antibacterial 
properties to reusable sanitary products, thereby 

enhancing the quality of life for young women who 
may not have the means to afford disposable ones.

Conclusion

This article provides insights into the developments 
and issues of SAPs for managing menstrual health, 
emphasizing the need for safer and more long-lasting 
solutions while addressing environmental issues. 
Exploring various SAP types, their preparation, 
absorption, and swelling factors, as well as techniques 
for antibacterial and self-cleaning qualities, provides 
insightful information. Additionally, incorporating 
nanotechnology into sanitary items has the potential 
to improve their use and hygienic standards. Although 
they currently have higher costs and worse perfor-
mance when compared to synthetic alternatives, the 
growing interest in bio-modified or natural-based 
SAPs is in line with the global commitment to envi-
ronmental conservation. The development of natural-
based SAPs becomes increasingly required because 
to the high volume of SAP consumption in sanitary 
applications and the rising price of crude oil, opening 
the path the way for future advancements in this field.
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