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ABSTRACT
In this work, vanadium pentoxide  (V2O5) nanoparticles-filled electrospun 
polyvinylpyrrolidone (PVP) nanofibers were investigated systematically at 
various nanofiller weight percentages (8 and 10 wt%) and input intensities to 
reveal the effective optical limiting feature in the visible spectrum. XRD analysis 
demonstrated the purity of the produced  V2O5 nanoparticles. According to SEM 
findings,  V2O5 nanoparticles were effectively integrated into the PVP nanofibers. 
Two distinct absorption bands were observed at around 400 and 217 nm. 
These bands were related to PVP and  V2O5 nanoparticles in linear absorption 
measurements, respectively. Moreover, an increased Urbach energy value was 
obtained with an increase in  V2O5 nanofiller content within PVP. Open-aperture 
Z-scan measurements were taken at 532 nm considering the band gap energy of 
the  V2O5 nanofillers in PVP composite nanofibers. In 8 wt%  V2O5 nanofilled PVP 
nanofibers, one-photon absorption (OPA) was the main nonlinear absorption (NA) 
mechanism, and the defect states of the  V2O5 nanoparticles had no contribution 
to NA. On the other hand, sequential two-photon absorption was the main NA 
mechanism, and the defect states of the nanoparticles caused more efficient NA 
behavior in 10 wt%  V2O5 nanofilled PVP nanofibers. The effective optical limiting 
behavior was obtained for this composite nanofiber with lower limiting threshold 
as 1.49 ×  10–5 J/cm2. The  V2O5 nanofilled PVP nanofibers presented strong 
potential optical limiters in the visible wavelength region. This was attributed 
to their high linear transmittance at low input intensities and their robust NA 
behavior at higher input intensities.
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limiting behavior of  V2O5 nanoflowers resulted from 
an effective three-photon absorption mechanism. 
Poonam et al. examined the OL response of the 
 V2O5:MoO3 thin films [31]. Nonlinear absorption was 
reported to be enhanced with increasing thickness 
in the  MoO3-doped sample. Saravanakannan et al. 
investigated the nonlinear absorption (NA) and OL 
behavior of the fluorine-doped  V2O5 nanoparticles 
[32]. It was reported that the exhibited nonlinear 
absorption was due to genuine two-photon absorption 
process. OL response of the  V2O5 thin films was also 
investigated by our group [33]. We observed defect-
assisted nonlinear absorption behavior in  V2O5 thin 
films and found that annealing at 450 °C enhances 
both the nonlinear absorption and optical limiting 
behavior.

In the literature, the nonlinear optical properties 
of the nanocomposite films have been extensively 
investigated [34–39] due to the combination of 
unique properties of nanoparticles and advantages 
of polymers. Beside these, there are few studies 
related with the nonlinear optical properties of 
the composite nanofibers. Pramod et al. reported 
the nonlinear optical character of electrospun 
benzil -poly(methyl  methacrylate)  (PMMA) 
nanofibers [40]. They reported that the nanofibers 
showed saturable absorption behavior at low 
input intensity and nonlinear absorption at higher 
input intensities. Yogeswari et al. examined the 
OL behavior of potassium dihydrogen phosphate 
(KDP)–polyethylene oxide (PEO) electrospun 
nanofibers [41]. They revealed that the excited-state 
absorption process played a dominant role in the 
observed nonlinearity and two-photon absorption 
was responsible for the observed OL performance. 
On the other hand, there is no study examining the 
linear optical features, charge transfer mechanisms, 
and OL features with limiting thresholds of the  V2O5 
nanoparticles-filled PVP composite nanofibers to 
the best of our knowledge. Nanoparticles have an 
exceedingly high surface-to-volume ratio owing 
to their small dimensions. This property increases 
the light–matter interactions compared to the bulk 
materials. Besides, nanofibers have high aspect 
ratio (length-to-diameter ratio), and this property 
supports increased light–matter interaction like in 
nanoparticles. The combined system (nanofibers 
filled with nanoparticles) should have higher 
light–matter interactions than either material. High 
light–matter interactions are possible due to the 

Introduction

High-level requirements for an ideal optical limiter 
include broadband optical limiting capability across 
the whole visible spectrum as well as broadband 
temporal capability from the sub-nanosecond to 
continuous regimes [1]. The development of the 
perfect broadband optical limiting materials has 
undergone a great deal of effort. These efforts are 
based on a variety of phenomena, such as saturable 
absorption, multiphoton absorption, nonlinear 
scattering, and nonlinear absorption. The material 
with high nonlinearity has many applications, 
including optical switches, optical limiters, lithium 
batteries, smart windows, and gas sensors [2–6]. 
Vanadium oxides are transition metal oxides (TMOs) 
with oxidation states of + 2 to + 5. Due to high oxygen-
to-vanadium (O/V) ratio, vanadium pentoxide  (V2O5) 
is the most stable phase and exhibits a phase transition 
at 257 °C [7, 8]. It has been the most studied vanadium 
oxide phase, due to its unique transition behavior 
from semiconductor to metal, with a wide optical band 
gap, improved thermal and chemical stability with 
excellent thermoelectric features [9–11]. Nevertheless, 
bulk  V2O5 faces limitations due to its low vanadium 
dissolution issues, electrical conductivity, and 
slow reaction kinetics [12, 13]. The use of  V2O5 has 
been demonstrated widely in gas sensors [14, 15], 
catalysis [16], electrochromic [17, 18], optoelectronic 
applications [19, 20], and solar cells [21, 22].

Nanoparticles can be incorporated into polymeric 
matrices to create nanofibers, ultimately enhancing 
their properties and introducing novel functionalities 
[23]. This allows modification of their physical, 
chemical, electrical, or optical characteristics. 
For example, metal oxide nanoparticles enhance 
tensile strength, while metal nanoparticles facilitate 
electrical conductivity within the nanofiber 
structure. Furthermore, to add optical functionalities, 
nanoparticles with particular optical properties can be 
included into nanofibers which are suited for use in 
light-emitting devices, sensors, and photonics.

It has been demonstrated that two-photon 
absorption causes substantial optical limiting (OL) 
in a number of semiconductors, including ZnSe, 
CdS, PbS, and ZnO, as well as in various organic 
materials [24–29]. However, few studies exist on the 
OL behavior of  V2O5. Parida et al. examined optical 
limiting features of  V2O5 nanoflowers based on three-
photon absorption [30]. It was reported that the optical 
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nanofibrous structure of electrospun mats, which 
significantly influences the materials’ nonlinear 
optical properties. Therefore, in this work,  V2O5 
nanoparticles synthesized by the hydrothermal 
method were used as nanofillers in PVP nanofibers. 
Wide band gap of PVP enabled the use of these 
composite nanofibers in a wide spectral range. Open-
aperture (OA) Z-scan measurements were taken at 
532 nm under diverse input intensities considering 
band gap energies of the composite nanofibers and 
their defect states created by  V2O5 nanoparticles. 
Linear optical features, charge transfer mechanisms, 
and OL features with limiting thresholds of the PVP/
V2O5 composite nanofibers were reported for the first 
time.

Materials and methods

Materials

Ammonium metavanadate  (NH4VO3), ethanol 
 (CH3CH2OH), and nitric acid  (HNO3) (65.0%) were 
purchased from Sigma-Aldrich. The polymer used is 
a polyvinylpyrrolidone (PVP) supplied from ACROS 
Organics. N–N dimethylformamide (DMF—ISOLAB, 
purity ≥ 99.0%) was used as  solvent.

Synthesis of  V2O5 nanoparticles 
and production of  V2O5 composite nanofibers

V2O5 powders were produced through hydrothermal 
synthesis, as reported by Mu et al. [42]. For 
the precursor solution, 0.819 g of  NH4VO3 was 
dissolved in 70 ml of ethanol with the help of nitric 
acid (2–3 ml). Nitric acid was used to adjust the 
precursor solution’s pH to about 3–4. The obtained 
precursor solution was vigorously stirred for half an 
hour. Subsequently, the solution was transferred to 
a Teflon-lined autoclave for reaction in an oven at 
180 °C for 24 h. The obtained particles were then 
washed with water and ethanol several times before 
drying at 80 °C for 10 h. Lastly, the obtained powder 
was annealed at 500 °C for 1 h.

A schematic for the fabrication procedure of 
the nanofibers is provided in Fig. 1. A 20 wt% 
PVP in DMF solution was prepared with constant 
stirring at ambient temperature. Afterward, 
PVP solutions containing 8 and 10 wt% (% of 
PVP) of  V2O5 nanoparticles were prepared. The 
nanoparticles were dispersed in polymer solutions 
through ultrasonication by a BANDELIN GM 2200 
ultrasonic homogenizer. Then, electrospinning 
was performed at ambient temperature. The tip-to-
collector distance of 15 cm, high voltage of 17.5 kV, 

Figure 1  Schematic diagram for the production of electrospun PVP and PVP/V2O5 nanofibers.
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and the flow velocity of 0.25 ml/h were found to be 
the ideal processing parameters. The nanofibers 
were electrospun onto fused silica substrates to 
take optical measurements. The obtained composite 
nanofibers were labeled as PVP/V2O5–8 and PVP/
V2O5–10 for 8 and 10 wt% of  V2O5 nanoparticles-
filled PVP nanofibers, respectively.

Characterizations

The crystal structure of the powders was identified 
by Rigaku D/Max-2000 diffractometer with Cu K 
radiation operating at 40 kV from 10° to 90° at a scan 
rate of 0.5°/min, and FEI Nova Nano FEG-SEM model 
scanning electron microscope (SEM) was used to 
examine the morphology of the powders. The surface 
chemistry and oxidation state of the elements in the 
powders were examined using X-ray photoelectron 
spectroscopy (XPS) and Raman spectroscopy. A 
monochromatic Al  Kα X-ray source (15 kV, 400 W) and 
a SPECS PHOIBOS hemispherical analyzer were used 
to perform the XPS investigations. As a benchmark, the 
nominal binding energy (B.E.) of the C1s signal, which 
is 284.68 eV, was chosen. With a 532-nm Nd:YAG laser 
as the excitation source, Raman spectra were recorded 
using a BRUKER FRA 106/S spectrometer. Using a 
Malvern Nano ZS, photon correlation spectroscopy 
was used to measure the average particle size of the 
nanoparticles dispersed in water. SEM images and EDS 
maps of the nanofibers were captured with a HITACHI 
SU5000 field emission scanning electron microscope 
(SEM) equipped with an Oxford X-MaxN 80 energy-
dispersive X-ray spectroscopy (EDS). All nanofibers 
were sputter coated with gold (Au) prior to analysis. 
Aluminum tape was used instead of carbon tape for 
SEM–EDS sample preparation to improve the contrast 
during analysis; 100 nanofibers were used to estimate 
their average diameters using ImageJ software (NIH—
USA). The composite nanofibers thicknesses were 
measured by a spectroscopic ellipsometer (Woollam 
M-2000V) at three angles of incidence (65, 70, and 
75°). The thicknesses of the composite nanofiber mats 
were found as 1.3 µm. Shimadzu UV-1800 model 
UV–Vis spectrophotometer was used to reveal the 
linear optical absorption feature-related band gaps 
of the composite nanofibers. To observe the possible 
defect states constructed emission, photoluminescence 
measurements were taken by PerkinElmer LS55 
spectrophotometer. Q-switched Nd:YAG (Quantel 
Brilliant) laser (4-ns pulse duration, 10-Hz repetition 

rate) at 532 nm was used to observe the nonlinear 
absorption (NA) behavior of the composite nanofibers 
with OA Z-scan measurements. The obtained results 
were evaluated for their optical limiting features.

Results and discussion

Morphological and structural properties 
of  V2O5 nanopowders

The morphology of the  V2O5 nanopowders was 
investigated by SEM analysis, and a representative 
micrograph is provided in Fig. 2a. The SEM image 
primarily showed aggregated irregular-shaped 
nanoparticles. All nanoparticles were dispersed in 
water to determine their average particle size using 
photon correlation spectroscopy. The d (0.5) and d 
(0.9) values were found to be around 235 and 432 nm, 
respectively. The XRD pattern of the synthesized  V2O5 
nanopowders is provided in Fig. 2b. The diffraction 
pattern was indexed to JCPDS #41–1426 with major 
diffraction peaks at 15.41°, 20.32°, 21.74°, 26.10°, 31.01°, 
32.43°, 34.39°, 47.31°, and 51.23° corresponding to 
lattice planes of (200), (001), (101), (110), (301), (011), 
(310), (600), and (020), respectively. This indicated 
a pure orthorhombic phase of  V2O5 [42–45]. No 
impurity peaks were obtained, proving the purity of 
the synthesized  V2O5 nanopowders.

XPS spectra for V2p core levels and O1s are 
provided in Fig. 2c and d, respectively. According to 
Silversmit et al. [46], V2p3/2 signals appeared at 517.2, 
515.8, 515.3, 513.7, 512.4 eV for the  V5+,  V4+,  V3+,  V2+, 
 V0 states, respectively. In Fig. 2c, it is evident that 
apart from the major O1s signal at 529.9 eV, there 
are three distinct V2p XPS signals detected at 524.6, 
517.1, and 515.7 eV. These signals can be ascribed to 
the  V5+2p1/2,  V5+2p3/2, and  V4+2p3/2 states, respectively, 
in great harmony with the literature [17, 33, 46–48]. 
This confirmed that the predominant oxidation state of 
vanadium ions was + 5. It is also important to highlight 
that the binding energy (B.E.) position between the 
 V5+2p3/2 and O1s signals has a value of Δ = 12.8 eV. 
Moreover, there is a spin–orbit splitting difference of 
Δ = 7.5 eV between the  V5+2p1/2 and  V5+2p3/2 signals. 
These findings strongly supported the conclusion that 
the vanadium oxidation state of + 5 is the dominant 
phase, consistent with previous studies [17, 46, 47]. 
On the other hand, the most intense signal at 529.9 eV 
in the O1s spectrum indicated the existence of a V–O 
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bond [49–51], provided in Fig. 2d. O1s signals at 
531.0 and 532.4 eV can be assigned to chemisorbed 
hydroxyl (OH) species [52, 53] and C=O/C–O(H) [17, 
53, 54] residual organic oxygenates on the surface, 
respectively (Fig. 2d).

Raman spectroscopy was utilized to further 
characterize the structure of  V2O5 powder. Figure 2e 
reveals  V2O5 powder with Raman features located 
at around 145, 195, 283, 303, 405, 481, 525, 701, and 
995  cm−1. Commercial  V2O5 powder and thin film 
peak positions were discovered to be in excellent 
concurrence with those described in the literature 
[17, 55–58]. The vanadyl mode associated with the 
stretching of V–O brought on by unshared oxygen 
was responsible for the high-frequency Raman peak at 
995  cm−1 [17, 50, 59]. The structural quality of the  V2O5 
nanoparticles was proved by the presence of this peak. 
Peaks located at 525 and 701  cm−1 were assigned to the 
stretching vibrations, and those at 303 and 481  cm−1 
were related to bending vibrations of the V–O–V 
bridging bonds [17, 60, 61]. Peaks at 283 and 406  cm−1 
were attributed to V=O bond bending vibration [62, 
63]. On the other hand, the lattice vibrations of O–V–O 
atoms were represented by the Raman peaks at 145 
and 197  cm−1 in the low-frequency zone [52, 64]. The 
layered structure of  V2O5 was directly related to these 

two peaks [45]. The peak at about 144  cm−1 was a rigid, 
layer-like mode. When the growth temperature was 
above 300 °C, the presence of this peak was indicative 
of the layer-like structure of  V2O5 films [65].

Morphological analysis of PVP/V2O5 
composite nanofibers

The SEM micrographs shown in Fig. 3 show that 
uniform and cylindrical nanofibers were produced in 
each case. Moreover, the diameters of the composite 
nanofibers were found to be thinner than the unfilled 
(PVP) ones (Table 1). This trend was also noted 
in the literature [66], associating the reduction in 
nanofiber diameter with increased surface charge 
of the polymer jet. The presence of nanoparticles 
that are more conductive than the polymer induces 
strong elongational forces that are applied on the 
jet, and therefore thinner nanofibers are formed 
[66–68]. Nevertheless, no definitive conclusions can 
be drawn regarding the impact-increased nanofiller 
content, as the average diameters of PVP/V2O5–8 
and PVP/V2O5–10 nanofibers exhibited a certain 
degree of similarity. To get better observation of the 
nanoparticles in PVP nanofibers, higher-resolution 
images are also provided as insets for composite 

Figure 2  a SEM images of  V2O5 powder at different magnifications (500 nm and 1 μm). b XRD pattern of  V2O5 powder. Regional XPS 
spectra for c V2p and d O1s core levels of  V2O5 powder. e Raman spectrum of  V2O5 powder.
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nanofibers. The  V2O5 nanoparticles were well 
incorporated into the PVP matrix of the nanofibers 
as shown in Fig. 3. The nanoparticles were clearly 
visible in the inset micrographs. These results are 
also confirmed by EDS maps provided in Fig. 4. As 
expected, vanadium (V) is particularly localized 
on the nanoparticles entrapped in the nanofibers. 

Figure 3  SEM micrographs and diameter distributions of produced PVP/V2O5 composite nanofibers. Insets show high-resolution SEM 
images of nanofibers.

Table 1  Average diameters of 
the produced nanofibers

Samples Average 
diameters 
(nm)

PVP 349 ± 40.6
PVP/V2O5–8 186 ± 44.8
PVP/V2O5–10 192 ± 56.8
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The primary elements, carbon (C), oxygen (O), and 
nitrogen (N), which were the constituents of PVP, 
were found to be concentrated on the nanofibers. 
Presence of gold (Au) was due to the sputter coating 
of the nanofibers. The presence of aluminum (Al) was 
due to the use of Al tape.

Linear optical analysis of PVP/V2O5 composite 
nanofibers

The linear optical absorption spectra of the composite 
nanofibers are provided in Fig. 5a. As shown in 
this figure, two absorption peaks were observed at 
wavelengths of 400 nm and 217 nm. The observed 
broad absorption at about 400 nm was attributed to the 
absorption of  V2O5 nanoparticles in nanofiber mats. 
On the other hand, the narrow intense absorption 
peaks observed at 217 nm were attributed to the PVP 
matrix. The determined absorption behaviors also 
indicated that the increasing concentration of  V2O5 
nanoparticles in the composite nanofibers led to a 

decrease in absorption behavior, despite having nearly 
identical thickness.

A crucial parameter that influences the NA 
behavior of the composite nanofibers was their 
band gap. Therefore, they were determined by 
(αhν)2 versus hν graphs known as Tauc plots [33], 
presented in Fig. 5b and c. The band gaps were 
calculated and provided in these figures. Band gap 
values of 5.11 and 5.33 eV were obtained using the 
absorption spectra of PVP. These values were highly 
consistent with those reported in the literature for 
PVP [69–72]. The small variation between the band 
gaps of the composite nanofibers can be due to the 
differences between their thicknesses. Moreover, the 
band gap values of PVP/V2O5–8 and PVP/V2O5–10 
composite nanofibers were found to be 2.26 and 
2.52 eV, respectively. These values were found to 
be compatible with the literature [73–75]. Urbach 
energy of the materials was the second important 
parameter to explain NA mechanisms. By identifying 
the efficient NA mechanisms, the design of effective 
optical limiters can be achieved. The expression of 

Figure 4  EDS spectrum and corresponding elemental composition and mapping of PVP/V2O5 composite nanofibers. The analysis area 
is given as inset.
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the Urbach energy of the materials revealed using 
their linear absorption results is given below.

where EU is the Urbach energy, α is the absorption 
coefficient, and α0 is a constant. The Urbach energies of 
the composite nanofibers are determined from inverse 
slope of the linear region in lnα versus hν graph which 
is provided in Fig. 5d. The Urbach energies were 
determined as 1.63 and 1.91 eV for PVP/V2O5–8 and 
PVP/V2O5–10 composite nanofibers, respectively. This 
result indicated that the increasing concentration of 
the  V2O5 nanoparticles in the PVP nanofibers led to 
an increase in defect states within the band gap of 
the composite nanofibers. The large Urbach energy 
reached for the studied composite nanofibers also 
demonstrated that the defect states were distributed 
to the deep energy region inside the band gap.

The photoluminescence spectra of the PVP/V2O5 
composite nanofibers given in Fig. 6 are obtained 
under an excitation wavelength of 300 nm. Both PVP/

(1)� = �
0
exp

(

hv∕
E
U

)

V2O5–8 and PVP/V2O5–10 composite nanofibers had 
emission signals at 447, 484, 545, and 568 nm. The 
energy of the 447- and 484-nm peaks corresponded to 

Figure 5  a Absorbance spectra and (αhν)2 versus hν graphs (Tauc plots) of the b composite nanofibers and c  V2O5 nanoparticles. d lnα 
versus hν plot of the composite nanofibers.

Figure 6  Photoluminescence spectra of the composite nanofib-
ers under 300 nm.
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the absorption band edge of the polymer. Therefore, 
these emission signals occurred during the transition 
of electrons from the defect states of the polymer to 
the valence band. On the other hand, the energies of 
545 and 568 nm are corresponded to the absorption 
band edge of the  V2O5 nanoparticles. Therefore, these 
emission signals originated during the transition of 
electrons from defect states to the valence band of the 
 V2O5 nanoparticles. Besides, it was seen that the fluo-
rescence intensity of these defect states was reduced 
with increase in the concentration of  V2O5 nanoparti-
cles in the polymer.

Nonlinear absorption and optical limiting 
analysis of PVP/V2O5 composite nanofibers

Nonlinear absorption behaviors of the PVP/V2O5 com-
posite nanofibers were investigated by OA Z-scan 
measurements at 532 nm with 4-ns pulsed laser. The 
linear transmittance of the PVP/V2O5–8 and PVP/
V2O5–10 composite nanofibers was 44% and 61%, 
respectively. These experiments were performed 

at pulse energies of 0.5, 1, and 1.5 µJ. The obtained 
experimental data with theoretical fits are presented 
in Fig. 7. It was clearly seen that all of the compos-
ite nanofibers presented a NA behavior. As seen in 
Fig. 7a, the NA increased with an increase in input 
intensity. On the other hand, the NA decreased with 
increasing input intensity as can be seen in Fig. 7b. 
This observation was attributed to filling of the defect 
states by one-photon absorption (OPA). As reported 
in the above section, these composite nanofibers have 
more defect states. Absorption from valence band to 
these defect states and/or absorption from these defect 
states to upper excited states would contribute to NA. 
Therefore, a theoretical fit model [Eq. (2)] consider-
ing the contribution of OPA, two-photon absorption 
(TPA), and free carrier absorption (FCA) to NA was 
used the determine the NA parameters such as non-
linear absorption coefficient (βeff) and saturable inten-
sity threshold (ISAT) values. These parameters are 
more important for the optical limiting behavior of the 
materials. In this model, the first term represents the 
OPA and its saturation, the second term corresponds 

Figure 7  Normalized transmittance of a PVP/V2O5–8 and b PVP/V2O5–10 composite nanofibers at various input intensities, and c vari-
ation of βeff with respect to input intensities.
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to the two-photon absorption (TPA) and its saturation, 
and the third term deals with free carrier absorption 
(FCA) and its saturation.

ΔN(I) is the generated photocarrier density, and �
eff

 
is the effective NA coefficient given as

where α is the linear absorption coefficient, ℏω is 
the photon energy, β is the TPA coefficient, τ

0
 is the 

pulse duration, and �
0
 is the FCA cross section. The 

following expression can be obtained by substituting 
Eqs. (3) and (4) in Eq. (2). The beam waist at the focus 
and Rayleigh length of the composite nanofibers are 
25 µm and 0.36 cm, respectively.

Fitting details can be found in the literature [76]. 
The obtained fitting results are listed in Table 2. The 
βeff value of the PVP/V2O5–8 composite nanofibers 
increased from 8.32 ×  10–6 to 2.99 ×  10–5 m/W with an 
increase in the input intensity. Similarly, the βeff value 
increased from 8.27 ×  10–6 to 3.58 ×  10–5 m/W with an 
increase in the input intensity. As it can be clearly 
seen in Table 2, the βeff value increased with the  V2O5 
nanofiller amount in the nanofibers. Similarly, ISAT 
values of both composite nanofibers increased with the 
input intensity, and the higher value was obtained for 
the PVP/V2O5–10 composite nanofibers. These results 
could be described with possible NA mechanism 
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of composite nanofibers. Taking into account the 
energy band gap values and Urbach energies of  V2O5 
nanoparticles and PVP, the OPA excites an electron 
from the valence band to the conduction band of  V2O5 
nanoparticles. There is no contribution that comes to 
NA from the defect states of  V2O5 nanoparticles for 
PVP/V2O5–8 composite nanofibers. These electrons 
in the conduction band of  V2O5 nanoparticles could 
be excited to the defect states of PVP via excited-state 
absorption (ESA) considering the energy band gap 
value of PVP/V2O5–8 composite nanofibers, and then, 
they could be excited to the conduction band of PVP 
with multiphoton absorption. On the other hand, for 
PVP/V2O5–10 composite nanofibers, the OPA was 
enough to excite an electron from the valence band to 
the defect states of  V2O5 nanoparticles. Some of these 
electrons could have lost a part of their energy and 
cooled down to lower excited states, and they could 
be excited to the defect states of the PVP via ESA. The 
OPA + ESA process is known as the sequential two-
photon absorption (TPA). For this NA mechanism, 
the βeff value decreases or increases depending on 
the input intensity. The plot of βeff with respect to 
input intensity presented in Fig. 7c shows this NA 
mechanism. A dramatic rise in βeff was observed 
with increasing input intensity. In PVP/V2O5–10 
composite nanofibers, an electron in defect states of 
PVP could be excited to the conduction band of PVP 
by the absorption of another photon (multiphoton 
absorption). Considering all of these NA mechanisms, 
the reason of the obtained stronger NA for PVP/
V2O5–10 composite nanofibers was the contribution 
of sequential TPA which was assisted by defect states 
of  V2O5 nanoparticles. In our previous report [33], 
the NA coefficient values of the as-deposited and 
annealed  V2O5 thin films were found in the range of 
3.85 ×  10–7 and 1.02 ×  10–6 cm/W. The present composite 
nanofibers exhibit a 100 times higher NA coefficient 
values. It is well-known that NA behavior of the 
materials is very sensitive to production method, 

Table 2  The nonlinear 
absorption coefficients (βeff), 
saturation intensity threshold 
(ISAT), and optical limiting 
threshold values (OLT) of 
the PVP/V2O5 composite 
nanofibers

I0 (MW/cm2) PVP/V2O5–8 PVP/V2O5–10

ISAT 
(×  1012W/
m2)

βeff (×  10−6 m/W) OLT 
(×  10−5 J/
cm2)

ISAT 
(×  1012W/
m2)

βeff (×  10−6 m/W) OLT 
(×  10−5 J/
cm2)

6.36 2.79 8.27 ± 0.24 9.78 8.32 ± 0.24
12.73 10.4 13.3 ± 0.4 19.3 15.0 ± 0.45
22.57 10.8 29.9 ± 0.89 2.16 38.6 35.8 ± 1.07 1.49
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morphology, band gap value, amount and distribution 
of the defect states, and possible NA mechanisms. In 
the case of composite nanofibers, the defect levels of 
PVP also contributed to possible NA mechanisms. 
Increasing defect levels and thus NA mechanisms 
induced larger NA behavior in PVP/V2O5 composite 
nanofibers.

In order to reveal TPA coefficient values of the com-
posite nanofibers, the OA Z-scan curves were fitted to 
TPA procedure introduced by Sheik-Bahae et al. [24]. 
The TPA coefficient is found from fitting of OA Z-scan 
data into Eq. (4).

 where m is an integer, q0 (z) is βI0Leff, β is the TPA 
coefficient, and the effective thickness is L

eff
=

1−e−�0L

�
0

 
with the sample thickness L, and αo is the linear 
absorption coefficient. Figure 8 indicates the OA 
Z-scan curves of the composite nanofibers with their 
theoretical fits at various input intensities. The TPA 
coefficient values of PVP/V2O5–8 composite nanofibers 
were found as 2.64 ×   10–7,  0.94 ×   10–7,  and 

(6)T(z) =

∞
∑

m=0

q
0

(m + 1)3∕2
(

1 + z
2/

z
2

0

)m

0.51 ×  10–7 m/W for 6.36, 12.73, and 22.57 MW/cm2 
input intensities, respectively. Besides, the TPA 
coefficient values of PVP/V2O5–10 composite 
nanofibers were found as 2.93 ×  10–7, 1.63 ×  10–7, and 
1.13 ×  10–7 m/W for 6.36, 12.73, and 22.57 MW/cm2 
input intensities, respectively. These results indicated 
that the increased  V2O5 nanofiller in PVP nanofibers 
caused greater TPA coefficient. As compared the TPA 
coefficient values with NA coefficient values, it was 
clear seen that the absorption depends on the defect 
states that contribute to NA and cause stronger NA 
behavior in the composite nanofibers. Saravanakannan 
et al. reported the TPA coefficient value of the  V2O5 
nanoparticles in solution to be 3.19 ×  10–10 m/W [32]. 
This result was smaller than that of our samples’ TPA 
coefficient values. This difference can be attributed to 
contribution of defects to TPA. The results of similar 
studies are listed in Table 3. At the same excitation 
condition, the NA coefficient values of the PVP/V2O5 
composite nanofibers are higher than that of listed 
results in Table 3. Considering nanoparticles having 
high surface-to-volume ratio and nanofibers having 
high aspect ratio (length to diameter ratio), combined 
nanoparticles-filled nanofibers led to increased 
light–matter interaction, which resulted in the 

Figure 8  OA Z-scan curves and TPA theoretical fits of PVP/V2O5 composite nanofibers at various input intensities.

Table 3  Comparison of NA coefficient and OLT values of reported nonlinear optical materials

Samples NA coefficient (m/W) OLT (J/cm2) Refs.

Benzil-poly(methyl methacrylate) (PMMA) nanofibers (9 ns, 532 nm) 2.1 ×  10–10 4.59 [33]
Potassium dihydrogen phosphate (KDP)–polyethylene oxide (PEO) 

nanofibers (5 ns, 532 nm)
3.55 ×  10–10 0.49 [34]

Cd–Fe co-doped CuO nanoparticles in solution (5 ns, 532 nm) 4.80 ×  10–10 1.40 [78]
Thulium-doped barium tellurite glasses (9 ns, 532 nm) 1.35 ×  10–10 2.14 [79]
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strengthening of NA. It is clear that these properties 
will be different for different morphologies, which 
were strongly affected by the electrospinning process 
and material parameters such as solution 
concentration, polymer density, high voltage applied, 
solvent, and molecular weight of the polymer. George 
et al. attributed the effective nonlinear absorption and 
optical limiting threshold to the enhanced light–matter 
interactions in nanofibrous morphologies [77]. 
Therefore, this result can be also attributed to a higher 
light–matter interaction in PVP/V2O5 composite 
nanofibers.

An ideal OL has high transparency in the open 
state, which allows for IR imaging, and high 
transparency in the limited state, which prevents 
damage from high-intensity light [78–81]. Stronger 
NA, nonlinear scattering, and nonlinear refraction 
features cause stronger optical limiting features 
of the materials under high input intensity. The 
optical liming curves of the composite nanofibers at 
22.57 MW/cm2 input intensity are presented in Fig. 9. 
The obtained values are listed in Table 2. The value 
of optical limiting threshold (OLT) was obtained 
to be 2.16 ×  10–5 J/cm2, and it was found to decrease 
to 1.49 ×  10–5 J/cm2 with increasing the content of 
 V2O5 nanofillers in polymer. This phenomenon was 
due to the stronger NA behavior of 10 wt%  V2O5 
nanoparticles-filled nanofibers when compared to 
8 wt%  V2O5 nanoparticles-filled ones. It is clear that 
the composite nanofiber mats produced in this study 
showed better optical limiting performance, with a 

lowest limiting threshold values at 532 nm compared 
to benchmark materials [82–84]. To assess the optical 
limiting performance of the examined nanofibers, a 
comparison is made with relevant studies in Table 3 
from the existing literature. It is observed that the 
optical limiting behavior of the PVP/V2O5 composite 
nanofibers surpasses that of the studies listed. These 
findings demonstrated that the  V2O5 nanofilled 
PVP composite nanofibers were promising for the 
fabrication of optical limiters for protecting vulnerable 
photodetectors and human eyes from hazardous 
pulsed laser radiation.

Conclusions

In this paper,  V2O5 nanoparticles synthesized by 
hydrothermal method were used as nanofillers in 
electrospun PVP nanofibers. XRD analysis proved 
the purity of the synthesized  V2O5 nanopowder. 
SEM results showed that  V2O5 nanoparticles were 
well incorporated into the PVP nanofibers. Linear 
absorption results revealed two absorption bands 
at around 400 and 217 nm which were related with 
the PVP and  V2O5 nanoparticles, respectively. The 
results also revealed that the increasing nanofiller 
content increased the Urbach energy from 1.63 to 
1.91 eV in the composite nanofibers. The OA Z-scan 
experiments were performed at 532 nm to reveal 
the defect states effect on the NA behavior of the 
composite nanofibers. It was revealed that the βeff 
value increased from 2.99 ×  10–5 to 3.58 ×  10–5 m/W 
with the increase in  V2O5 nanoparticle content at the 
same input intensity. The reason of this observation 
was ascribed to the possible occurring of NA 
mechanisms. In PVP/V2O5–8 composite nanofibers, the 
main NA mechanism was the OPA, and there was no 
contribution of the defect states of  V2O5 nanoparticles. 
On the other hand, sequential TPA was the main NA 
mechanism in PVP/V2O5–10 composite nanofibers. 
In the present composite nanofibers, the defect 
states of the  V2O5 nanoparticles, especially, induced 
the higher NA behavior. The lower optical limiting 
threshold was obtained for PVP nanofibers with the 
highest  V2O5 nanoparticle content as 1.49 ×  10–5 J/cm2. 
The combination of high linear transmittance at low 
input intensity and robust NA behavior at high input 
intensity renders PVP/V2O5–10 composite nanofibers 
as exceptionally promising candidates for optical 
limiters in the visible wavelength region.

Figure  9  Optical limiting curves of PVP/V2O5 composite 
nanofibers at an input intensity of 22.57 MW/cm2.
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