Skip to main content
Log in

Solvent-free fabrication of mechanically durable superhydrophobic film with regular hollow structures for passive cooling

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Passive daytime radiative cooling (PDRC) is an emerging nonpolluting, nonenergy-consuming cooling technology that relies on high reflectivity in the solar band and high emissivity in the infrared band. As an outdoor-oriented cooling material, its mechanical durability and optical stability are of great significance for long-term application. Herein, we fabricated a superhydrophobic polydimethylsiloxane-based film filled with regular hollow glass beads simply by blending, coating, and drying without using any solvents, followed by surface sanding. The hollow glass beads made the film possess regular hollow structures enabling the surface to maintain the superhydrophobic and optical properties even after severe abrasion. The as-fabricated film boasts a solar reflectance of 96.0%, a mid-infrared emissivity of 97.8% and a water contact angle of 163.9°, and achieves a cooling effect of 11.7 °C under direct sunlight. Additionally, these films can be applied as coatings to various substrates and offer appealing features such as self-cleaning, chemical stability, and weather resistance, making them highly suitable for outdoor applications. The entire preparation process is nontoxic and does not involve organic solvents, thereby expanding the range of preparation methods and application fields for PDRC materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The authors own all of the material/data.

References

  1. Wang Y, Yan PC, Ji F et al (2021) Unnatural trend of global land long-term surface air temperature change. Int J Climatol 41:2330–2341. https://doi.org/10.1002/joc.6961

    Article  Google Scholar 

  2. Li DH, Zhuang BR, Chen YC et al (2022) Incorporation technology of bio-based phase change materials for building envelope: a review. Energy Build 260:111920. https://doi.org/10.1016/j.enbuild.2022.111920

    Article  Google Scholar 

  3. Alsuhaibani AM, Refat MS, Qaisrani SA et al (2023) Green buildings model: Impact of rigid polyurethane foam on indoor environment and sustainable development in energy sector. Heliyon 9:e14451. https://doi.org/10.1016/j.heliyon.2023.e14451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hsu PC, Song AY, Catrysse PB et al (2016) Radiative human body cooling by nanoporous polyethylene textile. Science 353:1019–1023. https://doi.org/10.1126/science.aaf5471

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Grocholski B (2020) Cooling in a warming world. Science 370:776–777. https://doi.org/10.1126/science.abf1931

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Liu DW, Xia ZL, Shi KL et al (2019) A thermally stable cooler for efficient passive radiative cooling throughout the day. Opt Mater 92:330–334. https://doi.org/10.1016/j.optmat.2019.04.061

    Article  ADS  CAS  Google Scholar 

  7. Tang HJ, Zhou ZH, Jiao SF et al (2022) Radiative cooling of solar cells with scalable and high-performance nanoporous anodic aluminum oxide. Sol Energy Mater Sol Cells 235:111498. https://doi.org/10.1016/j.solmat.2021.111498

    Article  CAS  Google Scholar 

  8. Chen Z, Zhu LX, Raman A et al (2016) Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat Commun 7:13729. https://doi.org/10.1038/ncomms13729

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu CF, Ao XZ, Zhao B et al (2021) A novel selective emissivity spectrum for radiative sky cooling. Sol Energy Mater Sol Cells 232:111380. https://doi.org/10.1016/j.solmat.2021.111380

    Article  CAS  Google Scholar 

  10. Bhatia B, Leroy A, Shen YC et al (2018) Passive directional sub-ambient daytime radiative cooling. Nat Commun 9:5001. https://doi.org/10.1038/s41467-018-07293-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li D, Liu X, Li W et al (2021) Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat Nanotechnol 16:153–158. https://doi.org/10.1038/s41565-020-00800-4

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Dong Y, Han H, Wang FQ et al (2022) A low-cost sustainable coating: Improving passive daytime radiative cooling performance using the spectral band complementarity method. Renew Energy 192:606–616. https://doi.org/10.1016/j.renene.2022.04.093

    Article  CAS  Google Scholar 

  13. Huang MC, Yang MP, Guo XJ et al (2023) Scalable multifunctional radiative cooling materials. Prog Mater Sci 137:101144. https://doi.org/10.1016/j.pmatsci.2023.101144

    Article  Google Scholar 

  14. Cao D, Li XM, Gu Y (2022) Highly optically selective polyethylene porous films as versatile optical shields for daytime radiative cooling applications. Sol Energy Mater Sol Cells 240:111727. https://doi.org/10.1016/j.solmat.2022.111727

    Article  CAS  Google Scholar 

  15. Wong RYM, Tso CY, Chao CYH (2021) Thermo-radiative energy conversion efficiency of a passive radiative fluid cooling system. Renew Energy 180:700–711. https://doi.org/10.1016/j.renene.2021.08.109

    Article  Google Scholar 

  16. Zhao JT, Nan F, Zhou L et al (2023) Free-standing, colored, polymer film with composite opal photonic crystal structure for efficient passive daytime radiative cooling. Sol Energy Mater Sol Cells 251:112136. https://doi.org/10.1016/j.solmat.2022.112136

    Article  CAS  Google Scholar 

  17. Wu D, Liu C, Xu ZH et al (2018) The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater Des 139:104–111. https://doi.org/10.1016/j.matdes.2017.10.077

    Article  Google Scholar 

  18. Kort-Kamp WJM, Kramadhati S, Azad AK et al (2018) Passive radiative “thermostat” enabled by phase-change photonic nanostructures. ACS Photonics 5:4554–4560. https://doi.org/10.1021/acsphotonics.8b01026

    Article  CAS  Google Scholar 

  19. Bijarniya JP, Sarkar J, Maiti P (2020) Environmental effect on the performance of passive daytime photonic radiative cooling and building energy-saving potential. J Clean Prod 274:123119. https://doi.org/10.1016/j.jclepro.2020.123119

    Article  Google Scholar 

  20. Fan SH, Raman A (2018) Metamaterials for radiative sky cooling. Natl Sci Rev 5:132–133. https://doi.org/10.1093/nsr/nwy012

    Article  Google Scholar 

  21. Zhai Y, Ma YG, David SN et al (2017) Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355:1062–1066. https://doi.org/10.1126/science.aai7899

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Kong AR, Cai BY, Shi P et al (2019) Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling. Opt Express 27:30102–30115. https://doi.org/10.1364/OE.27.030102

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Huang YJ, Pu MB, Zhao ZY et al (2018) Broadband metamaterial as an “invisible” radiative cooling coat. Optics Commun 407:204–207. https://doi.org/10.1016/j.optcom.2017.09.036

    Article  ADS  CAS  Google Scholar 

  24. Woo HY, Choi Y, Chung H et al (2023) Colloidal inorganic nano- and microparticles for passive daytime radiative cooling. Nano Convergence 10:17. https://doi.org/10.1186/s40580-023-00365-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang J, Fan DS, Li Q (2022) Structural rod-like particles for highly efficient radiative cooling. Mater Today Energy 25:100955. https://doi.org/10.1016/j.mtener.2022.100955

    Article  CAS  Google Scholar 

  26. Huang J, Li MZ, Fan DS (2021) Core-shell particles for devising high-performance full-day radiative cooling paint. Appl Mater Today 25:101209. https://doi.org/10.1016/j.apmt.2021.101209

    Article  Google Scholar 

  27. Du TT, Niu J, Wang LY et al (2022) Daytime radiative cooling coating based on the Y2O3/TiO2 microparticle-embedded PDMS polymer on energy-saving buildings. ACS Appl Mater Interfaces 14:51351–51360. https://doi.org/10.1021/acsami.2c15854

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Zheng ZH, Gou YC et al (2021) Fabry-Perot resonance assisted dual-layer coating with enhanced wavelength-selective refection and emission for daytime radiative cooling. Optics Commun 483:126673. https://doi.org/10.1016/j.optcom.2020.126673

    Article  CAS  Google Scholar 

  29. Li N, Wei LM, You MZ et al (2023) Hierarchically structural TiO2-PVDF fiber film with particle-enhanced spectral performance for radiative sky cooling. Sol Energy 259:41–48. https://doi.org/10.1016/j.solener.2023.05.011

    Article  ADS  CAS  Google Scholar 

  30. Yang ZB, Jiang TK, Zhang J (2021) Passive daytime radiative cooling inorganic-polymeric composite artificial lawn for the alternative to the natural lawn. Sol Energy Mater Sol Cells 219:110783. https://doi.org/10.1016/j.solmat.2020.110783

    Article  CAS  Google Scholar 

  31. Zhou K, Li W, Patel BB et al (2021) Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett 21:1493–1499. https://doi.org/10.1021/acs.nanolett.0c04810

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Bijarniya JP, Sarkar J, Tiwari S et al (2023) Development and degradation analysis of novel three-layered sustainable composite coating for daytime radiative cooling. Sol Energy Mater Sol Cells 257:112386. https://doi.org/10.1016/j.solmat.2023.112386

    Article  CAS  Google Scholar 

  33. Tian Q, Tu XT, Yang L et al (2022) Super-large-scale hierarchically porous films based on self-assembled eye-like air pores for high-performance daytime radiative cooling. Small 18:2205091. https://doi.org/10.1002/smll.202205091

    Article  CAS  Google Scholar 

  34. Hu RJ, Wang N, Hou LL et al (2022) Bilayer nanoporous polyethylene membrane with anisotropic wettability for rapid water transportation/evaporation and radiative cooling. ACS Appl Mater Interfaces 14:9833–9843. https://doi.org/10.1021/acsami.1c22974

    Article  CAS  PubMed  Google Scholar 

  35. Hu LC, Xue CH, Liu BY et al (2022) Scalable superhydrophobic flexible nanofiber film for passive daytime radiative cooling. ACS Appl Polym Mater 4:3343–3351. https://doi.org/10.1021/acsapm.1c01907

    Article  CAS  Google Scholar 

  36. Huang MC, Xue CH, Huang JY et al (2022) A hierarchically structured self-cleaning energy-free polymer film for daytime radiative cooling. Chem Eng J 442:136239. https://doi.org/10.1016/j.cej.2022.136239

    Article  CAS  Google Scholar 

  37. Liu BY, Xue CH, Zhong HM et al (2021) Multi-bioinspired self-cleaning energy-free cooling coatings. J Mater Chem A 9:24276–24282. https://doi.org/10.1039/D1TA07953K

    Article  CAS  Google Scholar 

  38. Ni JH, Zhang YX, Song ZF et al (2023) Salt-template-assisted melt-processed porous poly (vinylidene fluoride) nanocomposites for highly efficient all-day passive radiative cooling. Compos A Appl Sci Manuf 164:107311. https://doi.org/10.1016/j.compositesa.2022.107311

    Article  CAS  Google Scholar 

  39. Liu JW, Tang HJ, Jiang CX et al (2022) Micro-nano porous structure for efficient daytime radiative sky cooling. Adv Func Mater 32:2206962. https://doi.org/10.1002/adfm.202206962

    Article  CAS  Google Scholar 

  40. Li MZ, Yan Z, Fan DS (2023) Flexible radiative cooling textiles based on composite nanoporous fibers for personal thermal management. ACS Appl Mater Interfaces 15:17848–17857. https://doi.org/10.1021/acsami.3c00252

    Article  CAS  PubMed  Google Scholar 

  41. Tang X (2023) Multifunctional droplet-surface interaction effected by bulk properties. Droplet 2:e38. https://doi.org/10.1002/dro2.38

    Article  Google Scholar 

  42. Xu FF, Wang FJ, Lei S et al (2023) Superhydrophobic poly-4-methyl-1-pentene/polyvinylidene fluoride coating with excellent passive daytime radiation cooling performance. Appl Phys A 129:266. https://doi.org/10.1007/s00339-023-06560-x

    Article  ADS  CAS  Google Scholar 

  43. Ye X, Li YY, Zhang Y et al (2022) Superhydrophobic polyurethane membrane with a biomimetically hierarchical structure for self-cleaning. ACS Appl Mater Interfaces 14:49274–49283. https://doi.org/10.1021/acsami.2c13208

    Article  CAS  PubMed  Google Scholar 

  44. Wang H-D, Xue C-H, Ma C-Q et al (2024) Durable and scalable superhydrophobic colored composite coating for subambient daytime radiative cooling. ACS Sustain Chem Eng 12:1681–1693. https://doi.org/10.1021/acssuschemeng.3c07329

    Article  CAS  Google Scholar 

  45. Wang T, Zhang Y, Chen M et al (2022) Scalable and waterborne titanium-dioxide-free thermochromic coatings for self-adaptive passive radiative cooling and heating. Cell Reports Phys Sci 3:100782. https://doi.org/10.1016/j.xcrp.2022.100782

    Article  CAS  Google Scholar 

  46. Yang Y, Jiang M, Ma Z et al (2023) The coating with ZrO2-coated hollow glass microspheres: Low solar absorption and high microwave transmittance. Mater Des 232:112136. https://doi.org/10.1016/j.matdes.2023.112136

    Article  CAS  Google Scholar 

  47. Wu Q, Cui Y, Xia G et al (2023) Passive daytime radiative cooling coatings with renewable self-cleaning functions. Chinese Chem Lett 35(2):108687. https://doi.org/10.1016/j.cclet.2023.108687

    Article  CAS  Google Scholar 

  48. Zhang H, Ly KCS, Liu X et al (2020) Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc Natl Acad Sci 117:14657–14666. https://doi.org/10.1073/pnas.2001802117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52103263, 52271249), Key Project of International Science & Technology Cooperation of Shaanxi Province (2023-GHZD-09), Key project of Science Foundation of Education Department of Shaanxi Province (22JY011), Key Project of Scientific Research and Development of Shaanxi Province (2023GXLH-070), Qinchuangyuan “Scientist + Engineer” Team of Shaanxi Province (2023KXJ-069), Key Research and Development Program of Shaanxi Province (2020ZDLGY13-11), Key Research and Development Program of Shaanxi (2023-YBGY-488), and Sci-tech Innovation Team of Shaanxi Province (2024RS-CXTD-46).

Funding

The Funding was provided by National Natural Science Foundation of China, 52103263, Xiao-Jing Guo, 52271249, Jun Cheng, Key Project of International Science & Technology Cooperation of Shaanxi Province, 2023-GHZD-09, Chao-Hua Xue, Key project of Science Foundation of Education Department of Shaanxi Province, 22JY011, Xiao-Jing Guo, Key Project of Scientific Research and Development of Shaanxi Province, 2023GXLH-070, Chao-Hua Xue, Shaanxi Key Laboratory of Land Reclamation Engineering, 2023KXJ-069, Chao-Hua Xue, Key Research and Development Program of Shaanxi Province, 2020ZDLGY13-11, Chao-Hua Xue, Key Research and Development Program of Shaanxi, 2023-YBGY-488, Jun Cheng, Sci-tech Innovation Team of Shaanxi Provience, 2024RS-CXTD-46, Chao-Hua Xue

Author information

Authors and Affiliations

Authors

Contributions

SQL involved in investigation, writing-original draft, visualization, methodology. CHX involved in conceptualization, funding acquisition, project administration, supervision, writing–review and editing. XJG involved in funding acquisition, project administration, supervision, writing-review and editing. HDW involved in data curation, methodology. MCH involved in methodology, validation. CQM involved in methodology, validation. WMZ involved in data curation, software. RRG involved in methodology, validation. YGW involved in data curation, methodology. JC involved in funding acquisition. JL involved in funding acquisition. HWW involved in funding acquisition, resources.

Corresponding authors

Correspondence to Chao-Hua Xue or Xiao-Jing Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Not applicable.

Ethical approval.

Not applicable.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, SQ., Xue, CH., Guo, XJ. et al. Solvent-free fabrication of mechanically durable superhydrophobic film with regular hollow structures for passive cooling. J Mater Sci 59, 4252–4266 (2024). https://doi.org/10.1007/s10853-024-09500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09500-z

Navigation