Skip to main content
Log in

Effect of Si alloying on the structural, thermal expansion, and magnetic properties of FeCoNiAlSix high-entropy alloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, a series of FeCoNiAlSix (x = 0, 0.2, 0.4, and 0.6) high-entropy alloys (HEAs) were prepared by mechanical alloying and spark plasma sintering. The effects of Si alloying on the structural, thermal expansion, and magnetic properties of HEAs were investigated. The X-ray diffraction and microscopic results reveal that the crystal structure changes from FCC + BCC to single BCC phase with increasing Si content. By increasing Si content, the coefficient of thermal expansion decreases, especially at high temperatures, indicating that Si has a greater effect on improving the dimensional stability. In addition, the developed HEAs exhibit good saturation magnetization ~ 86.23 emu/g, low coercivity ~ 18.4 Oe, and high electrical resistivity ~ 84 µΩ.cm, indicating the present HEA can be used in soft magnetic applications. Furthermore, the hardness of HEAs increased from 510 ± 10 to 730 ± 10 HV with an increasing Si content due to formation of stable BCC phase. The present study demonstrates that alloying of Si facilitates a balance between desirable physical and mechanical properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5 

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce the above findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  2. Nagarjuna C, Dewangan SK, Sharma A, Lee K, Hong SJ, Ahn B (2023) Application of artificial neural network to predict the crystallite size and lattice strain of cocrfemnni high entropy alloy prepared by powder metallurgy. Met Mater Int 29(7):1968–1975. https://doi.org/10.1007/s12540-022-01355-w

    Article  CAS  Google Scholar 

  3. Dewangan SK, Nagarjuna C, Jain R, Kumawat RL, Kumar V, Sharma A, Ahn B (2023) Review on applications of artificial neural networks to develop high entropy alloys: a state-of-the-art technique. Mater Today Commun 37:107298. https://doi.org/10.1016/j.mtcomm.2023.107298

    Article  CAS  Google Scholar 

  4. Sharma A, Lee H, Ahn B (2022) Effect of additive elements (x = Cr, Mn, Zn, Sn) on the phase evolution and thermodynamic complexity of AlCuSiFe-x high entropy alloys fabricated via powder metallurgy. Met Mater Int 28:2216–2224. https://doi.org/10.1007/s12540-021-01125-0

    Article  CAS  Google Scholar 

  5. Lee H, Sharma A, Ahn B (2022) Microstructural evolution and compressive properties of nanocrystalline Ti–Fe alloy fabricated via cryomilling and spark plasma sintering. J Mate Sci 57:1–12. https://doi.org/10.1007/s10853-022-07509-w

    Article  CAS  Google Scholar 

  6. Nagarjuna C, You HJ, Ahn S, Song JW, Jeong KY, Madavali B, Song G, Na YS, Won JW, Kim HS, Hong SJ (2021) Worn surface and subsurface layer structure formation behavior on wear mechanism of CoCrFeMnNi high entropy alloy in different sliding conditions. Appl Surf Sci 549:149202. https://doi.org/10.1016/j.apsusc.2021.149202

    Article  CAS  Google Scholar 

  7. Tsai MH (2013) Physical properties of high entropy alloys. Entropy 15:5338–5345. https://doi.org/10.3390/e15125338

    Article  ADS  CAS  Google Scholar 

  8. Wang WL, Meng LJ, Li LH, Hu L, Xhou K, Kong ZH, Wei BB (2016) An Experimental study of thermophysical properties for quinary high-entropy NiFeCoCrCu/Al Alloys. Chin Phys Lett 33:11610. https://doi.org/10.1088/0256-307X/33/11/116102

    Article  Google Scholar 

  9. Makarian K, Santhanam S, Wing ZN (2016) Coefficient of thermal expansion of particulate composites with ceramic inclusions Ceram. Inter 15:17659–17665

    Google Scholar 

  10. Nagarjuna C, Dewangan SK, Lee K, Ahn B (2023) Mechanical and thermal expansion behaviour of TiC-reinforced CoCrFeMnNi high entropy alloy prepared by mechanical alloying and spark plasma sintering. Powder Metall 66(5):613–622. https://doi.org/10.1080/00325899.2023.2219145

    Article  ADS  CAS  Google Scholar 

  11. Chou HP, Chang YS, Chen SK, Yeh JW (2009) Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys. Mater Sci Eng B 163:184–189. https://doi.org/10.1016/j.mseb.2009.05.024

    Article  CAS  Google Scholar 

  12. Cao R, Jiang JX, Wu C, Jiang XS (2017) Effect of addition of Si on thermal and electrical properties of Al-Si-Al2O3 composites. IOP Conf Ser Mater Sci Eng. 213:012001. https://doi.org/10.1088/1757-899X/213/1/012001

    Article  Google Scholar 

  13. Wang W, Li H, Wei P, Zhang W, Chen J, Yuan S, Fan Y, Wei R, Zhang T, Wang T, Chen C, Li F (2021) A corrosion-resistant soft-magnetic high entropy alloy. Mater Lett 304:130571. https://doi.org/10.1016/j.matlet.2021.130571

    Article  CAS  Google Scholar 

  14. Yu P, Zhang L, Cheng H, Zhang H, Ma M, Li Y, Li G, Liaw P, Liu R (2016) The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics 70:82–87. https://doi.org/10.1016/j.intermet.2015.11.005

    Article  CAS  Google Scholar 

  15. Na SM, Yoo JH, Lambert PK, Jones NJ (2018) Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys. AIP Adv 8:056412. https://doi.org/10.1063/1.5007073

    Article  ADS  CAS  Google Scholar 

  16. Zuo T, Yang X, Liaw PK, Zhang Y (2015) Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics 67:171–176. https://doi.org/10.1016/j.intermet.2015.08.014

    Article  CAS  Google Scholar 

  17. Han L, Rao Z, Souza F, Souza Filho IR, Maccari F, Wei Y, Wu G, Ahmadian A, Zhou X, Gutfleisch O, Ponge D, Raabe D, Li Z (2021) Ultrastrong and ductile soft magnetic high-entropy alloys via coherent ordered nanoprecipitates. Adv Mater 33(37):2102139. https://doi.org/10.1002/adma.202102139

    Article  CAS  Google Scholar 

  18. Harivandi M, Malekan M, Seyyed Ebrahimi SA (2022) Soft magnetic high entropy FeCoNiCuMn alloy with excellent ductility and high electrical resistance. Met Mater Int 28:556–564. https://doi.org/10.1007/s12540-021-01111-6

    Article  CAS  Google Scholar 

  19. Osaka T, Takai M, Hayashi K, Ohashi K, Saito M, Yamada K (1998) A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature 392:796–798. https://doi.org/10.1038/33888

    Article  ADS  CAS  Google Scholar 

  20. Lucas MS, Mauger L, Munoz JA, Xiao Y, Sheets AO, Semiatin SL, Horwath J, Turgut Z (2011) Magnetic and vibrational properties of high-entropy alloys. J Appl Phys 109:07E307. https://doi.org/10.1063/1.3538936

    Article  CAS  Google Scholar 

  21. Bahrami AH, Sharafi S, Ahmadian Baghbaderani H (2013) The effect of Si addition on the microstructure and magnetic properties of Permalloy prepared by mechanical alloying method. Adv Powder Technol 24(1):235–241. https://doi.org/10.1016/j.apt.2012.06.008

    Article  CAS  Google Scholar 

  22. Kumar A, Dhekne P, Swarnakar A, Chopkar M (2016) Analysis of Si addition on phase formation in AlCoCrCuFeNiSix high entropy alloys. Mater Lett 188:73–76. https://doi.org/10.1016/j.matlet.2016.10.099

    Article  CAS  Google Scholar 

  23. Kumar A, Dhekne P, Swarnakar A, Chopkar M (2019) Phase evolution of CoCrCuFeNiSix high-entropy alloys prepared by mechanical alloying and spark plasma sintering. Mater Res Express 6:026532. https://doi.org/10.1088/2053-1591/aaed63

    Article  ADS  CAS  Google Scholar 

  24. Lee H, Sharma A, Ahn B (2023) Exploring strengthening mechanism of FeCoNiAl high-entropy alloy by non-metallic silicon addition produced via powder metallurgy. J Alloys Compd 947:169545. https://doi.org/10.1016/j.jallcom.2023.169545

    Article  CAS  Google Scholar 

  25. Nagarjuna C, Dewangan SK, Lee H, Ahn B (2023) Evolution of phase stability and structural properties in CrFeNiTiV high-entropy alloy under high-temperature heat treatment conditions. Mater Sci Eng A 886:145680. https://doi.org/10.1016/j.msea.2023.145680

    Article  CAS  Google Scholar 

  26. Guo S, Liu CT (2011) Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int 21:433–446. https://doi.org/10.1016/S1002-0071(12)60080-X

    Article  Google Scholar 

  27. Wang WL, Meng LJ, Li LH, Hu L, Zhou K, Wei BB KZH (2016) An Experimental study of thermophysical properties for quinary high-entropy NiFeCoCrCu/Al alloys Chinese phys. Lett 33:116102. https://doi.org/10.1088/0256-307X/33/11/116102

    Article  Google Scholar 

  28. Huang S, Vida Á, Heczel A, Holmström E, Vitos L (2017) Thermal Expansion, elastic and magnetic properties of FeCoNiCu-based high-entropy alloys using first-principle theory. JOM 69:2107–2112. https://doi.org/10.1007/s11837-017-2565-6

    Article  CAS  Google Scholar 

  29. Jadhav M, Disna K, Verma A, Singh S (2021) Thermal stability and thermal expansion behavior of FeCoCrNi2Al high entropy alloy. Adv Powder Technol 32:378–384. https://doi.org/10.1016/j.apt.2020.12.019

    Article  CAS  Google Scholar 

  30. Lin CL, Lee JL, Kuo SM, Li MY, Gan Lu, Murakami H, Mitani S, Gorsse S, Yeh AC (2021) Investigation on the thermal expansion behavior of FeCoNi and Fe30Co30Ni30Cr10-xMnx high entropy alloys. Mater Chem Phys 271:124907

    Article  CAS  Google Scholar 

  31. Laplanche G, Gadaud P, Horst O, Otto F, Eggeler G, George EP (2015) Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J Alloys Compd 623:348–353. https://doi.org/10.1016/j.jallcom.2014.11.061

    Article  CAS  Google Scholar 

  32. Zuo TT, Li RB, Ren XJ, Zhang Y (2014) Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy. J Magn Magn Mater 371:60–68. https://doi.org/10.1016/j.jmmm.2014.07.023

    Article  ADS  CAS  Google Scholar 

  33. Uporov S, Bykov V, Pryanichnikov S, Shubin A, Uporova N (2017) Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy. Intermetallics 83:1–8. https://doi.org/10.1016/j.intermet.2016.12.003

    Article  CAS  Google Scholar 

  34. Zhang H, Yang Y, Liu L, Chen C, Wang T, Wei R, Zhang T, Dong Y, Li F (2019) A novel FeCoNiCr0.2Si0.2 high entropy alloy with an excellent balance of mechanical and soft magnetic properties. J Magn Magn Mater 478:116–121. https://doi.org/10.1016/j.jmmm.2019.01.096

    Article  ADS  CAS  Google Scholar 

  35. Wenqi L, Qin Z, Yanguo L, Xihui Y, Lifeng D, Wenshuai Z, Xiaowei Y, Yongan L (2023) Effects of milling time on the microstructure and properties of FeCoNiMnAl magnetic high-entropy alloys. Mater Today Commun 34:104777. https://doi.org/10.1016/j.mtcomm.2022.104777

    Article  CAS  Google Scholar 

  36. Li P, Wang A, Liu CT (2017) A ductile high entropy alloy with attractive magnetic properties. J Alloy Compd 694:55–60. https://doi.org/10.1016/j.jallcom.2016.09.186

    Article  CAS  Google Scholar 

  37. Li Z, Bai G, Liu X, Bandaru S, Wu Z, Zhang X, Yan M, Xu H (2020) Tuning phase constitution and magnetic properties by composition in FeCoNiAlMn high-entropy alloys. J Alloys Compd 10(845):156204. https://doi.org/10.1016/j.jallcom.2020.156204

    Article  CAS  Google Scholar 

  38. Sun GF, Qiang WJ (2007) Magnetic material. Chemical Industry Press, Beijiing

    Google Scholar 

  39. Gu X, Zhuang YX, Jia P (2022) Evolution of the microstructure and mechanical properties of as-cast Al0.3CoCrFeNi high entropy alloys by adding Si content. Mater Sci Eng: A 840:142983. https://doi.org/10.1016/j.msea.2022.142983

    Article  CAS  Google Scholar 

  40. Bingqian J, Nannan Z, Fengzhen W, Yue Z, Deyuan L (2018) Phase evolution and wear mechanism of AlCoCrFeNiSix high-entropy alloys produced by arc melting. Mater Res Exp 5:096505. https://doi.org/10.1088/2053-1591/aad52b

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1A2C1005478). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2022R1I1A1A01055105).

Author information

Authors and Affiliations

Authors

Contributions

CN contributed to Conceptualization, Methodology, Investigation, Data curation, Writing – Original draft, Writing–Review & editing. SKD contributed to Investigation, Data curation, Writing – Review & editing. HL contributed to Data curation, Writing – Review & editing. BM contributed to Data curation, Writing – Review & editing. BA contributed to Conceptualization, Methodology, Writing – Review & Editing, Project administration, Funding acquisition.

Corresponding author

Correspondence to Byungmin Ahn.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests or competing financial interests regarding the publication of this manuscript.

Ethical approval

Not applicable.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarjuna, C., Dewangan, S.K., Lee, H. et al. Effect of Si alloying on the structural, thermal expansion, and magnetic properties of FeCoNiAlSix high-entropy alloys. J Mater Sci 59, 4281–4292 (2024). https://doi.org/10.1007/s10853-024-09474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09474-y

Navigation