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ABSTRACT
Materials with heterogeneous microstructures architected across several scales are 
becoming increasingly popular in structural applications due to unique strength–
ductility balance. One of the most popular 3D-architected structure designs is 
harmonic structure (HS) where soft coarse-grain (CG) islands are embedded in 
a hard continuous 3D skeleton of ultrafine grains (UFGs). In this work, a series 
of HS with varying phase fractions and rheologies are studied based on several 
models. Model A focuses on a good fit with experimental data in the elastic–plas-
tic transition region, model B focuses on a good fit at large-scale yielding, while 
in five intermediate models, phase rheology parameters are varied on a linear 
scale between the values for A and B. For each of the seven selected HS material 
models, structures with 19 different volumetric fractions of UFG were examined. 
It is found that the increase of UFG fraction leads to the monotonic increase of 
strength characteristics in HS material, while higher strain hardening rates in the 
phases lead to the enhancement of this effect. By contrast, the dependence of duc-
tility characteristics on UFG fraction is non-monotonic having a local minimum 
at 30% UFG and a maximum at 60% UFG, while also significantly dependent on 
strain hardening in the phases. Namely, HS material with phases having signifi-
cant strain hardening reveals the highest uniform elongation exceeding that in 
100% CG material already at 40% UFG fraction. The fractions of UFG in a range 
of 58–62% form HS material with the highest possible uniform elongation.

Introduction

The mechanical properties of metals and alloys are 
highly affected by grain size. It is well known that 
strength increases, and ductility decreases with 

decreasing grain sizes [1–3]. In the past few dec-
ades, ultrafine grain (UFG) structures have received 
much attention for their potential to give interest-
ing mechanical and physical properties contrasting 
coarse-grain (CG) materials of similar compositions 
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[4, 5]. Despite significant achievements in preserving 
ductility in UFG materials, it is still often at a level 
significantly lower than desirable.

Fabricating a bimodal grain size distribution has 
been proposed to optimise the mechanical properties 
of metals for high strength and high ductility [6, 
7]. Of particular interest in such an approach are 
harmonic structure (HS) materials in which the CG 
phase islands are surrounded by a three-dimensional 
skeletal network of the UFG phases [8–11]. The 
fabrication of HS materials is typically achieved by 
using powder metallurgy-based technology [10, 12]. 
Such a bimodal structure combines the ductility of 
CG and the strength of UFG for a multitude of metals 
[8, 9] including stainless steel [13, 14], titanium 
[15–17] and nickel [18, 19].

Numerical simulations using finite element methods 
are by far the most frequently used to investigate the 
plastic deformation behaviour of metals and alloys 
[20–22]. Also, the strain distributions of severe plastic 
deformation processes during the fabrication of 
homogeneous UFG have been studied using finite 
element methods [23–25]. Recently, simulations 
of dislocation dynamics and 3D crystal plasticity 
modelling were used to support theoretical results 
on deformation mechanisms in HS materials, cf. [26, 
27]. Another recent 2D finite element model to study 
the influence of topological arrangements in ultrafine 
and coarse grains on the mechanical behaviour of pure 
nickel was presented by Shokry et al. [28]. Common 
for these studies is that they highlight the advantages 
of using a mixed ultrafine- and coarse-grain topology.

However, a detailed understanding of CG/UFG 
fraction ratios on the behaviour of such structures is 
still missing, and more work in this area is urgently 
needed. In the present work, nineteen 2D finite 
element structural arrangements with different 
fractions of CG and UFG phases and for each, the 
seven different UFG-CG pairs of material models are 
studied. The CG inclusions are uniformly distributed 
inside a network of a UFG skeleton. The von Mises 
equivalent stresses and plastic strains are investigated 
at and close to the ultimate load for the studied 
models. In addition, normal stress components as well 
as shear components are also studied. Furthermore, 
characteristic patterns of the failure path for a few of 
the models are observed.

The overall aim of the present work is to study the 
effect of the phase volume fractions on the mechanical 
properties of the bimodal structures. Special attention 

is devoted to the optimal volumetric skeleton content 
and its dependence on the selected material properties 
as described in the sub-section 2.1.

Materials testing and properties

The computational models of material rheologies 
in the present work are based on our earlier 
investigations of HS nickel. In those studies, metal 
powder with an average particle diameter of 149.5 
� m was prepared by plasma rotating electrode process 
from commercially pure nickel. The particles were 
processed by mechanical milling to form a gradient 
structure in each of them and finally, these were 
spark-plasma sintered to fabricate harmonic structure 
compacts. The properties were examined in tensile 
tests. Further details of the procedures can be found 
in Refs. [18, 19].

Material models

Both CG and UFG phases are modelled as isotropic 
elastic–plastic with a strain hardening based on 
experimental data for both pure CG and UFG nickel. 
The Cauchy stresses, also called true stresses, �

x
, �

y
 , 

and �
xy

 and logarithmic strains �
x
, �

y
, �

z
 , and �

xy
 are 

used for numerical analyses. According to established 
practice, the strains are split into elastic and plastic 
parts, i.e.

The elastic stress–strain relationship is Hooke’s law for 
which the elastic modulus, E, is taken to be 207 GPa 
and Poisson’s ratio, � = 0.31 for both phases, cf. [29].

The original material properties are obtained at low 
strain rates, and the material models are assumed to 
be strain rate non-sensitive. The plastic strains are 
given by von Mises yield criterion together with its 
associated flow rule. Input plastic data, i.e. true flow 
stress and plastic strain for both CG and UFG phases 
are fitted to the experimental data by using a Hollomon 
stress–strain relationship. The equivalent stress, �  , 
related to von Mises’ yield criterion is approximated 
by power functions of the corresponding equivalent 
total strain, � , as follows,

(1)�
x
= �e

x
+ �

p

x
, �

y
= �e

y
+ �

p

y
, etc.

(2)� = k�s,
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where the coefficients k assume the values k = k
UFG

 
MPa and k = k

CG
 MPa for the UFG and the CG, respec-

tively. The corresponding powers s = s
UFG

 and s = s
CG

 . 
Both k and s are determined from tensile testing.

The yield stress, �
Y
 , can be calculated using Eqs. 1 

and 2 and the fact that the plastic part of the effective 
strain �p = 0 at the initiation of yielding, i.e. when 
� = �

Y
 . For uniaxial stress, the elastic strain � = �

Y
∕E, 

which requires that,

Inserted in Eq. 2 it gives the following alternative form 
for the power law,

According to [18], the yield stress is �
Y,CG

= 49.3 MPa 
for CG and �

Y,UFG
= 371 MPa for UFG. Equation 3 

imposes a restriction for the measured yield stress, �
Y
 , 

and the fitted power law coefficient, k. The parameters 
k and s are fitted to approximate the plastic behaviour 
at large plastic straining while the measured yield 
stress �

Y
 is obtained at vanishing plastic straining. 

The parameters �
Y

 and k originate from different 
measurements, cf. [18]. Therefore, it is not surprising 
that the two values are slightly incompatible with 
Eq. 4.

The inclusions of the softer CG phase are assumed 
to be exposed to mild compression and shear, while 
the harder UFG phase skeleton is expected to carry 
a larger part of the tensile load [30, 31]. The attempt 
of the present paper is to explore what a significant 
change in material properties would lead to. 
Preliminary results were not significantly affected by 
the choice of governing Eq. 2 or its alternative 4. This 
and the paramount role of the skeleton and its strength 
motivated the use of a UFG phase that has a higher 
hardening rate.

The available mechanical testing of the UFG phase 
is limited to straining of only a couple of per cent due 
to early onset of plastic instability. The failure that 
includes fracture is not included in the present study. 
One of the reasons not to include fracture is that the 
hydrostatic stress, which triggers void growth and 
ductile fracture, is assumed to be low. The assumption 
is motivated by the very thin almost wirelike skeletal 
structure of the UFG material that, embedded as it is 
by softer CG material, does not develop high hydro-
static stresses. At the same time, it should be noted that 
low hydrostatic stresses do not guarantee the absence 

(3)k = E
s�1−s

Y
.

(4)� = �1−s
Y

(E�)s.

of dilatancy, which can exist at low and even high 
hydrostatic pressures and be one of the reasons for 
premature material fracture. cf. [32].

As a consequence of the very small ultimate strain 
at the testing of the pure UFG material, the fitting of 
s and �

Y
 to the test results is rather uncertain. There-

fore a wider spectrum of UFG phase rheologies is 
included in the present study. An augmented UFG 
model A with a larger power law exponent s and a 
basic model B based on the measured exponents. The 
basic model B, phase pair is based on the hardening 
experimentally obtained, cf. [18], s

UFG-B
= 0.106 for the 

UFG phase and s
CG-B

= 0.376 for the CG phase, and the 
augmented model A where both materials are given 
the same exponents s

UFG-A
= s

CG-A
= 0.376.

What remains is to adjust measured but incompat-
ible values of the measured yield stress �

Y
 vis-à-vis 

the power law parameters k and s. Here, the coeffi-
cient k is selected to be calculated to fit the measured 
yield stress for the UFG-A, UFG-B and CG-B models 
according to Eq. 3. For CG-A, the yield stress is cal-
culated using the measured k. The latter provided an 
opportunity to confirm the preliminary results giving 
insignificant changes caused by the selection to calcu-
late the yield stress �

Y
 or alternatively the power law 

coefficient k.
All parameters are summarised in Table 1, in which 

the values that are calculated from other measured 
quantities are marked with an asterisk. The remain-
ing data originates from tensile testing, cf. [18, 29]. 
Although the calculated yield strength (indicated 
with *) appears low, it gives the best fit to the plas-
tic behaviour that can be obtained using the Hollo-
mon relationship Eq. 2 on the available stress–strain 
data, cf. [18]. We do know that the calculated yield 
stress is somewhat lower than expected from litera-
ture (approximately 70 MPa). The change in this value 
does not have any significant effect on the final results 
of our simulations, which have a focus on strain levels 
that are several orders of magnitude larger.

The HS phase rheology models A and B give sig-
nificantly different results, which motivate that cal-
culations are performed also for intermediate phase 
rheologies. Thus, a range of phase rheologies is given 
by parameters k, �

Y
 , and s, that are linearly scaled to 

fill in the gap between HS models A and B. The scaling 
is based on a parameter q and is performed as follows,
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while p replaces k or s, and with p
A

 and p
B
 replacing 

the corresponding parameters for models A and B. The 
yield stress �

Y
 is readily calculated using the inverse 

of Eq. 3. Obviously, the extreme values q = 0 and q = 1 
refer to pure models A and B, respectively, and the 
remaining q’s are the five intermediate models.

Figure 1a shows an overview and Fig. 1b a close-up 
of a range of elongations that are assumed to be suf-
ficient for all seven material models used. All the val-
ues are considered to be relevant, which also applies 
to those for q < 0.5 in spite of the fact that these are 
unrealistically high being dominated by model A. The 

(5)
p = p

A
(1 − q) + p

B
q, where q = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1

latter are useful for simulation purposes and keep-
ing track of possible trends. However, in real life, the 
material will fracture well before reaching these values 
if the hydrostatic pressure in the deformation zone is 
low or will be suppressed to lower strain hardening 
values through a change in deformation mechanisms if 
the hydrostatic pressure is sufficiently high, cf. [33]. It 
should be noted that elongation levels up to � , mean-
ing an average engineering strain of 100%, are not 
expected because of the onset of plastic instability due 
to several events that may be initiated by large strain 
or stress. Mechanical testing procedures usually leave 
us with a truncated stress–strain curve. It ends because 
of fracture, plastic collapse, a mix or something else. 
The only failure mechanism included in the present 
study is failure due to the reduction of the cross-sec-
tional thickness in a narrow region transversing the 
entire specimen typically called necking.

As observed the changes due to the choice between 
relying on the measured k and �

Y
 as for the CG phase, 

are only minor. This is in contrast to the same includ-
ing also a change of the power law exponent s makes 
larger changes as observed for the UFG phases. It may 
also be noted that the strength of the UFG phases ends 
up as lower than the strength of the CG phases for 
large elongations (see Figure 1b) for materials with 
q ≳ 0.95.

Figure 1  True stress versus normalised elongation �∕� relation-
ships for pure UFG and CG phases. The two models A and B 
and their intermediate models are given by the scaling parameter 
q = 0, 0.1, 0.25, 0.5, 0.75, 0.90 and 1 , cf. Equation  5a shows the 
curves for an excessively large range of elongations. The maxi-
mum elongation reached in the model UFG phases before the 
beginning of global instability is marked with an asterisk. With 

full appreciation of excessively large values of strength a low 
q < 0.5 values, they are kept in the diagram for the visualisation 
of potential trends. For clarity, only the pure models A and B, i.e. 
q = 0 and 1 are included as dashed curves for CG. b shows the 
relations for elongation, �∕� , up to 0.02 including the elastic part 
for which all models coincide.

Table 1  HS phase rheology models A and B with the coefficient 
k calculated for phase rheologies UFG-A, UFG-B and CG-B 
using Eq. 3, the given yield stresses �

Y
 and powers, s 

For CG-A the yield stress is calculated using the inverse of Eq. 3 
and the given parameters k and s. Calculated values are marked 
with *

Material Yield stress, �
Y

[MPa]
Coefficient, k 
[MPa]

Power, s [-]

UFG-A 371 4000* 0.376
CG-A 28.41* 805 0.376
UFG-B 371 726* 0.106
CG-B 49.3 1135* 0.376
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Numerical modelling

The FE model in the present study corresponds to a 
quarter of the gage section of the tensile specimen with 
the harmonic structure, used in our earlier experimen-
tal work [14]. The prepared tensile sample dimensions 
had in the gage section length, height and thickness 
of 5 ×1 × 1 mm3 . With the CG in-plane circular inclu-
sions and UFG as a skeleton, the 2D model inclusions 
form a homogeneously close-packed structure. In the 
x–y plane, the 2D model is composed of periodic cells 
with dimensions of � × � , where � = 0.1 mm. With 50 
cells in the x-direction and 10 cells in the transverse 
y-direction, this gives 500 unit cells. The adequacy of 
using a 2D FE model was justified in [28].

The loading, constraints and specimen geometry 
give several symmetries that, without loss of gener-
ality, allow the calculation of a reduced part of the 
specimen. Taking the time-consuming calculations of 
the half-size specimens into consideration, a 2D finite 
element model of 5 × 5 unit cells is used. This makes a 
square segment containing 25 unit cells with the side 
length L=5, �=0.5 mm. The selection of the reduced 
model is assured by a comparison of results with a 
half-size model made in a preliminary calculation 
that shows a perfect match of the results, as is further 
elaborated in Subsection 4.2.

The reason for not reducing the model size further to 
include just a single column is due to the expected nar-
row region of localised strain that traverses the speci-
men at an angle to the loading direction. It is expected 
since it eventually happens for homogeneous materials 
that are governed by von Mises yield condition and 
its associated flow rule under plane stress conditions 
when it is exposed to a uniaxial load. At least as long as 
the stress does not exceed critical levels for the initia-
tion of voids, cracks or other faults that lead to early 
failure. Further details regarding the selected square 
region of 5 × 5 unit cells are given in Subsection 4.9.

In the present work, a finite element method is 
used to simulate the uniaxial tension of seven differ-
ent materials spanning from phase rheological model 
A to ditto model B. For all materials, 19 fractions of 
volumetric contents of 0, 23, 27, 30, 35,... 90, 95, 99 and 
100% of UFG skeleton were modelled. The 0% and 
100% mean pure CG respective pure UFG materials.

Boundary conditions

The 5 × 5 unit cells square model is subjected to two 
boundary conditions on each of the four edges. With 
the notation u and v used for displacements in the x 
and y directions, the boundary conditions give a con-
strained displacement u = 0 along the left vertical edge 
at x = 0 and incrementally increased displacement 
u = � along the right vertical edge at x = L . The upper 
edge at y = L entertains symmetry boundary condi-
tions, while the lower edge at y = 0 is traction-free. All 
boundaries are free from shear tractions, i.e. �

xy
= 0 on 

all edges. The complete set of boundary conditions is 
included in Fig. 2.

Finite elements, meshing and method

Figure 2a shows the 5 × 5 unit cells with the circular 
inclusions and the applied boundary conditions. 
Figure 2b shows a typical mesh for a unit cell with 
60% of the volume covered by the CG inclusions 
shown in green. The centre positions of the circular 
inclusions are the same for all amounts of CG from 
1% to 77%, while the radius varies.

Plane stress three-node constant strain elements 
(CPS3) are used, cf. Abaqus/CAE [34]. The mesh 
is obtained by a Delaunay type of triangulation 
algorithm, cf. [35], with a higher element density 
in the narrow regions of UFG ligaments confined 
between the CG inclusions. The calculations are 
performed using a large strain formulation and 
Cauchy stresses. For plane stress, this means that 
what is called generalised strain is invoked. This 
means that the local thickness h = h(x, y) is considered 
for equilibrium, i.e.

Further, the application of load is assumed to be suf-
ficiently slow so that the structure remains unaffected 
by inertia and viscous material behaviour.

The area percentages covered UFG skeleton are 
the 19 area fractions 0, 23, 27, 30, 35,... 90, 95, 99 and 
100%. The remaining area of each is covered by the 
CG phase. The reason for the gap between fractions 
0 to 23% is that the circular inclusions are not permit-
ted to intersect meaning that the largest possible CG 
fraction is �∕4 ≈ 78.54% . The number of elements in 
the 5 × 5 cells ranges from around 120,000 to slightly 

(6)
�(h�

x
)

�x
+

�(h�
xy
)

�y
= 0 and

�(h�
xy
)

�x
+

�(h�
y
)

�y
= 0.
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above 310,000 for the 19 different fractions. The cal-
culations for the smallest and largest inclusions, i.e. 
the UFG fractions 90 to 99% and 23 to 35%, require 
the largest element densities to obtain element-inde-
pendent results before the onset of general structural 
instability.

Results and discussion

In this section, first preliminary calculations are 
made to confirm the expected midplane symmetry 
and to verify the selected 5 × 5 unit cell including the 
limited influence of the traction-free surfaces. This 
is then followed by detailed analyses of the several 
material models and the span of UFG contents from 
0 to 100%.

Dimensional concepts

The problem has a variety of parameters that rely on 
units of length, such as elongation � and the specimen 
dimensions which are 1 ×1×10L3 being width, thick-
ness and length. The length L is the single length scale 
used in this study, which means that as long as all 
variables given in length units have the same ratio the 
result will be identical. The selected force unit affects 

the value of the yield stress, �
Y
 , the power law coef-

ficient k,  and the modulus of elasticity, meaning that 
with a force unit, e.g. �

Y
L
2 all cases have the same 

ratio of k, E versus the yield stress will give identical 
results. The remaining parameter, s, cf. Equation (2) 
is non-dimensional and has to have a fixed value to 
provide identical results. By using L as the length unit 
and, �

Y
L
2 as the force unit, the entire problem becomes 

non-dimensional and can be applied to any geometry 
and materials with the same ratios between geometric 
characteristics measured in length units and between 
load characteristics measured in units of force. Non-
dimensional quantities, e.g. such as the exponent s, 
have to remain the same.

Qualification of the 5 × 5 unit cell model

The half specimen geometry and the reduced geome-
try in Fig. 3 a and b are compiled with coherent bound-
ary conditions showing insignificantly different results 
of true stress versus strain up to the ultimate load for 
the two geometries, cf. Figure 3c. The calculated result 
is expected because of the manifold symmetries that 
prevail as long as the structures remain stable. The 
many models that require rather tedious calculations 
are made possible by the large reduction of CPU time 
that is achieved with the smaller specimen.

Figure  2  a 5 × 5 unit cells and applied boundary conditions. In 
this case, 40% of the area is covered by the UFG skeleton, here 
shown in bright colour. The remaining 60%, shown in dark green, 
are the CG inclusions. The elongation is controlled by an applied 

displacement � of the vertical right-hand side boundary. b The 
mesh is obtained by a Delaunay type of triangulation algorithm, 
cf. [35].
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The symmetry conditions apply to all vertical cuts 
marked in black through both the geometries. This 
means that all single columns of half-unit cells could 
be representative of the entire specimen up to the 
ultimate load. However, a single column is assumed 
to be insufficient for two reasons, first, local instabil-
ity may occur before global instability because of the 
larger stresses expected at the traction-free surfaces 
which will reduce the stress along the surface in the 
neighbouring unit cells. Second, the single-column 
width limits the possibility of forming a narrow band 
of localised strain to only a practically vertical one. As 
a consequence, this would erroneously increase the 
ultimate load. A quadratic segment would allow faults 
to propagate down to 45◦ against the direction of load-
ing. Low angles reduce the load across the failure path 

and do therefore not seem plausible. For this study, 
the quadratic five-column geometry is, therefore, con-
sidered to be sufficient.

On the influence of the traction‑free boundary

First, a preliminary 10× 10 cells column model is com-
puted. The boundary conditions are traction-free 
surfaces along 0 ≤ x ≤10� and at both y = 0 and 10� . 
The reason for the larger geometry for this single case 
is a precaution to check if symmetry prevails and to 
explore how much of the specimen is affected by the 
traction-free boundaries. The selected case is for a UFG 
coverage of 40% at 10% total strain. The phase rheol-
ogy is described by model B.

Figure 4 with more detailed data in Table 2 shows 
the reaction forces, F

n
 , acting on unit cells 1 to 5 with 

Figure  3  The 2D finite element model for 60% of the volume 
occupied by the soft coarse grain inclusions in the hard ultrafine 
grain skeleton. a The modelled full width and half length of the 
frequently used specimen are covered with 10× 25 quadratic unit 

cells each having 4 inclusion halves. b The reduced model with 
5 × 5 unit cells. c Obtained true stress–strain curves of both geom-
etries along with experimental data from [19].
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a half-cell resolution. The abscissa gives the position 
of the unit-cell number along the edge at x = 0 start-
ing with n = 1 for the one closest to y = 0 and ending 
with n = 5 for the cell that is closest to the midspeci-
men boundary at y = 5� . The relative deviation of 

F
n
 as compared with a deeply embedded cell F∞ , i.e. 

(F
n
− F∞)∕F∞ is included in Table 2. For the directions 

of the Cartesian coordinates x and y and their origin 
x = y = 0 , at the lower left corner of the meshes, in 
Fig. 3a and b.

Figure 4  The relative reaction force per half-cell versus y-direc-
tion given by the cell number. Forces or equivalently the engi-
neering stresses are normalised with respect to the same at a 
large distance from the surface. Numbers are 1 starting at the 

traction-free surface at y = 0 and 5 ending at the mid-specimen 
and the symmetry boundary at y = L . The stress distribution is 
identical across any vertical cut through the 10× 5 unit cell part, 
i.e. at x∕L = 0, 0.05, 0.1, 0.15.

Figure  5  Visualisation of developed typical waviness on the 
peripheral traction-free surface for volumetric contents 77%, 
60%, 40% and 23% UFG. The situation is immediately before 
the initiation of global instability, i.e. there is no significant dif-
ference between the five vertical columns of five unit cells, cf. 
Figure  3b. The unit cell represents all cells in the bottom row 
of Fig.  3b. The left and right boundaries remain straight, as is 

expected from the symmetries across them. Also, the upper 
boundary is almost straight, indicating that this is practically a 
symmetry line. This is in line with the observed small differences 
in reaction forces between all unit cell rows above the lowest half 
of the unit cells closest to the traction-free boundary, at y = 0 , cf. 
Figure 4. The material model parameter q = 1 , i.e. model B, cf. 
Figure 1.

Table 2  Reaction forces acting on the 10 half-cell model at x = 0 from cell #1 closest to the traction-free surface at y = 0 to half-cell 
#10 closest to the mid-specimen symmetry boundary

Half-cell n #1 #2 #3 #4 #5 #6 #7-#10

Fn [N] 18991 20286 20217 20187 20196 20199 20196± 1
Fn∕F10

− 1 [%] −5.97 0.45 0.10 −0.04 0.00 0.01 ± 0.00005

6122



J Mater Sci (2024) 59:6115–6133 

The reaction forces acting on half-cells #7 to #14 
belong to a central region where all cells deviate less 
than 0.01% from their average. In the middle of the 
central region, both half-cells #10 and #11 are in equal 
positions on opposite sides of the symmetry line and 
are the closest to the mid-specimen symmetry line. 
They are, therefore, the best representatives of a half-
cell at a sufficient distance to be unaffected by the 
traction-free surface. Therefore half-cell reaction force 
F
10

 is selected as F∞.
In addition to the plane stress in the x-y plane with 

absent �
z
 , �

xz
 and �

yz
 , at the traction-free boundaries 

where also �
y
 , and �

xy
 vanish we are left with the only 

possible non-zero stress, �
x
 , i.e. a layer close to the sur-

face harbours a uniaxial stress state. The soft inclusions 
break this layer. The absence of shear stresses �

xy
 creates 

a wavy surface. Further, into the material, the waviness 
would persist, but the shear will be resisted by increas-
ing shear stresses. At some distance from the surface, the 
deformation is reduced by shear stresses in equilibrium 
and horizontal unit cell boundaries will become straight 
and the state will be a so-called generalised plane strain, 
i.e. absent shear, �

xy
 , and no total net force in the y-direc-

tion on each cell boundary, cf. Figure 5.
The deviation from the total reaction force caused 

by the surfaces would be the total sum of deviations 
divided by the number of cells across the specimen, as 
Table 2 readily shows, be around −0.54% for a 10 unit 
cells wide specimen. The observation supports the 
assumption that a 5 × 5 unit cell model is sufficient for 
predicting results for any specimen with a height of 10 
or more unit cells.

Also, a model for a volume of 90% UFG skeleton 
coverage shows a similar result with insignificant 
deviations (below 0.5%) between half-unit cells from #3 
to #10. However, for very small inclusions, the effect of 
the free surface may spread to involve more than the 
two closest half-cells and for sure, in the absence of 
inclusions the entire specimen is in a plane stress state.

Given the limitations regarding very small inclusions 
the observations that only the two half-unit cells closest 
to the traction-free surfaces, deviate from the cells in 
the interior of the model in any significant way offers 
a possibility to estimate the stiffness of specimens with 
widths of both more and fewer unit cells. Thus, a slightly 
bold suggestion could be that the lowest number, N, of 
full unit cells is at least 3. It seems reasonable that the 
limitations and advantages apply also to non-symmetric 
cases. For a symmetric case, the total reaction force, 
F  , for N full unit cells, at any given elongation prior 

to strain localisation, would simply be calculated as 
follows:

where i represents the unit cell numbers, counted 
across the specimen from one of the traction-free 
boundaries. The forces F

1
 , F

2
 and F∞ may be obtained 

from numerical results for any specimen with N ≥ 3.

Tensile properties

Seven phase rheological pairs and for each pair nine-
teen different composites with different amounts of 
the UFG content, i.e. altogether 133 models are exe-
cuted. The material properties are based on phase 
rheological models A and B and intermediate materi-
als having scaled phase rheological parameters k and 
�
Y
 that is given by q as is described in Subsection 2.1.
The variation of the amount of UFG phase is based 

on the different inclusion radii giving 0, 23, 27, 30, 35,... 
90, 95, 99 and 100% of UFG. In addition, calculations 
for pure ultrafine grain and for pure coarse grain are 
performed.

Figure 6 shows the total reaction force versus the 
original cross section of 1 mm2 , i.e., the engineering 
stress for rheological model A and selected UFG 
contents. The loading process is stable as long as 
the incrementally increasing elongation requires an 
increasing load due to the strain hardening of both 
materials. The simultaneous reduction of the cross-
sectional area counteracts the increase of the load. If 
no other processes such as fracture, initiation of voids 
and void growth, or other failure mechanisms occur 
then the decreasing strain hardening rates inevitably 
lead to loss of load-carrying capacity. It happens when 
the effect of the cross-sectional reduction rate exceeds 
the effect of the strain hardening rate, according to 
Considére’s condition.

At this point, the elongation is limited to the 
straining across a single narrow band traversing 
the specimen. The rest of the specimen will 
predominantly, experience only elastic unloading. The 
initiation of cracks or voids is not anticipated. Further, 
the minimum width of the band of localised strain is 
constrained by the size of the elements which limits 
the rate of load decrease versus elongation, i.e. what 
is the dashed part of the curves in Fig. 6. In the real 

(7)F =
N

Σ
i=1

F
i
= 2(F

1
+ F

2
) + (N − 4)F∞,

6123



 J Mater Sci (2024) 59:6115–6133

world, the thickness of the specimen would affect the 
width of the region of localised strain, i.e. the dashed 
part of the curves.

Things become dependent on the length of the 
two unloading parts, which is almost the entire 
specimen length. While the width of the band of 
localised strain becomes as thin as the elements 
allow. During the process, there is a flux of released 
energy from the elastically unloading parts to the 
narrow energy-consuming band of localised strain. 
The energy consumed during the formation of the 
narrow band of localised strain is dependent on the 
element size. Because of this, the primary focus of 
the present study is on the structural behaviour until 
the ultimate load is reached.

The dependencies of the ultimate tensile stress 
and the uniform elongation on the UFG skeleton 
fraction are plotted in Fig. 7a and b, respectively, for 
seven material models ( q = 0, 0.1, 0.25, 0.5, 0.75, 0.9 
and 1) for each of 19 different volumetric percentages 
of the UFG phase. The markers in the figure show the 
results of the 133 calculated combinations of phase 
rheology and geometric models.

As Fig. 7a shows, the ultimate load-carrying 
capacity increases monotonically and nearly 
proportionally with increasing UFG content, which 
agrees well with the results presented in Fig.6. It is 
also interesting to note that the increase of strength 
is very modest when the HS models have low strain 
hardening, i.e. at high q values. However, the higher 

the strain hardening of the phases the stronger 
the effect of increasing UFG fraction with a sharp 
increase between 99% and 100% UFG phase.

When it comes to the dependence of elongation 
(ductility) on the UFG fraction, see Fig. 7b, the 
trend is opposite. The largest linear drop down to a 
minimum ductility at 100% UFG is found in the HS 
material with the lowest strain hardening, i.e. q=1. 
Very interestingly, the dependence of elongation 
on UFG fraction becomes non-monotonic for the 
HS models having substantial strain hardening, 
q >0.9. Three characteristic UFG fractions can be 
distinguished for such phase rheologies including 
two local minima and one maximum as follows: 

 (I) In the range of approximately 30% UFG 
fraction, the first minimum can be found 
beyond which the increase of UFG phase 
leads to an increase in ductility.

 (II) At approximately 60% UFG fraction, the 
increase of ductility reaches a local maximum 
and starts decreasing with a further increase 
in UFG fraction. The discussion of this 
maximum is elaborated in subsection 4.6.

 (III) At approximately 98% UFG fraction, a second 
local minimum in ductility can be found.

It is also important to notice that the level of ductility at 
40% UFG is higher than at 100% CG counterpart for HS 
phase rheologies having the highest strain hardening, 

Figure 6  Engineering stress 
� = ΣFi∕L

2 versus elongation 
�∕L for material model A, 
i.e. q = 0 , and different UFG 
volumetric fractions, cf. Fig-
ure 1. The solid curves mark 
stable loading. The transition 
to the dashed curves marks 
the load maximum at the 
onset of global strain concen-
tration (i.e. ultimate strength), 
and structural instability (i.e. 
uniform tensile strength).
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i.e. when q ≥0.25. The effects of characteristic UFG 
fraction (III) are discussed in detail in subsection 4.5, 
while those for UFG fractions (I) and (II) in 4.6. In 
summary, the trends presented in Fig.7 are consistent 
with our prior experimental results, [13, 14, 36]. At 
the same time, they go beyond the previous findings 
into the range of higher UFG fractions and suggest 
possibilities for further optimisation of HS materials 
performance.

Effects of infinitesimal inclusion size 
compared with pure UFG material.

Figure 7b shows that all HS models suffer from 
similar elongation drops (local minima) when a very 
small fraction of CGs remains in the microstructure 
as infinitesimally small inclusions at 99% UFG. The 
largest increase is obtained for HS phase rheology 
model A, i.e. for q=1. It is also interesting to note that 
the dependence of ductility characteristics such as 
uniform elongation on UFG fraction is non-monotonic.

The drop is caused by the small inclusions and the 
stress concentration that each one of them causes. 
When the inclusions are as small and sparse as they 
are for only 1% coverage, the average stress becomes 
insignificantly affected by the present inclusion. 
On the other hand, the largest local stress remains 
constant and depends only on the shape and the 
materials differences and not the size of the inclusion. 
Even a single inclusion would produce the same 
stress concentration provided that it is small. It would 
not affect the average stress but with the same local 

stress concentration it produces the same role as a 
source of localised strain and as a starting point of 
a propagating fault. Once the fault extends outside 
the vicinity of the traction-free surface the fault 
will rapidly traverse the specimen and cause global 
instability. A condition is of course the element mesh 
is sufficiently refined in parallel with the decreasing 
inclusion sizes to allow the formation of the narrow 
band of localised high strains. The large difference 
between extremely small inclusions is that the large 
local stress creates conditions for the initiation and 
growth of a fault that traverses the specimen. The 
complete absence of inclusions delays the event and 
results in a significantly larger ultimate strain and 
discontinuous behaviour as compared with any 
infinitesimal inclusions.

The largest elongation at the ultimate load.

Figure 8 shows a summary of the skeleton volume 
fraction that gives the peak elongation for each model 
parameter q cf. Equation 5. For q ≳ 0.6 the local maxi-
mum is exceeded by the pure CG material which 
provides a larger elongation at the ultimate load than 
any of the HS material models. However, the pure CG 
material has a considerably lower stress. For material 
models with q ≥ 0.88 , a local maximum elongation 
does not appear.

In addition to this, it is interesting to note that the 
experimental result, i.e. a local maximum elonga-
tion obtained for 40% volumetric percentage UFG, 
reported in [14] is here obtained for a material with 

Figure 7  a The ultimate stress �m = Fm∕L
2 and b the respective 

uniform elongation �∕L summarised from stress–strain curves 
such as shown in Fig. 6, for phase rheology models A ( q = 0 ) and 

B ( q = 1 ) and five intermediate rheological models, cf. Figures 1 
and  2. The results are plotted versus the volumetric fraction of 
the UFG skeleton encapsulating the CG inclusions.
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q ≈ 0.84 which is fairly close to HS rheological model 
B.

When these results are considered in a broader 
context of heterogeneous materials, e.g. [6], the 
direct translation is not straightforward. The 
highest level of similarity can be observed in the 
dependence of strength characteristics on UFG 
phase fraction. However, the dependence of ductility 
characteristics on the same varies significantly 
depending on heterogeneity type. Compared to 
the gradient and lamellae-type heterogeneities, HS 
materials demonstrate significantly more distinct 
non-monotonic dependence, which also increases 
magnitude with the increase of strain hardening 
capacity in each phase. At the same time, dual-phase 
steels and multimodal structure materials are more 
similar to HS, while the latter typically demonstrate 
a more regular pattern of heterogeneity distributions 
and therefore easier to control.

Normal and principal stresses in the interior 
of the specimen

The traction-free surfaces only affect the unit cell row 
that is closest to the surfaces as is described in Subsec-
tion 4.3. The variation is less than 0.5% in all other unit 
cells. Along each row, all cells have the same result 
with no variation at all before strain localisation is ini-
tiated. Therefore, the result along 0 ≤ x ≤ � at y = 5� , 
shown in Fig. 9, surprisingly well represents all unit 

cell boundaries at y = �, 2�, ..., 8� and 9� all cells apart 
from the traction-free boundaries at y = 0 and y = 10� . 
Three volumetric percentages of 23%, 40% and 77% 
UFG phase are selected, which encompasses a reason-
able range of useful materials.

The symmetry across the x-axis at y = 5� and the 
traction-free surfaces at y = 0 and y = 10� require 
that the shear stresses vanish, i.e. �

xy
= 0 . Therefore, 

the normal stresses �
x
  , �

y
 and �

z
 are principal 

stresses. As is observed in Fig. 9 �
y
 is at all locations 

with ample margins, lower than �
x
 , which means 

that �
x
= �

1
 is everywhere along y = 5� the largest 

principal stress, whereas the second and third largest 
principal stresses �

2
 and �

3
 shift between �

y
 and �

z
 

depending on whether �
y
 is tension or compression. 

The observation also suggests that if a crack is 
initiated it will initially be perpendicular to the 
tensile x-direction.

The stress distribution for different columns of 
unit cells may vary because of mesh differences. The 
differences may escalate when instability is immi-
nent. With an exact solution, all differences should 
be absent. Obviously, along the midplane y = 5� the 
stress state is practically identical along each unit 
cell. The original suggestion y = �  , i.e. on the top 
of the unit cell at the traction-free surface, would 
be the best if it turns out to be reasonably close to 
y = 5� . If the differences are fairly small, it is reason-
able to assume that all cells in x from −2.5� to 2.5� 
and y from 2� to 8� , have the same stress states. This 

Figure 8  The UFG skeleton 
volume fraction gives the 
peak elongation for each 
HS model parameter q mix 
of HS model A ( q = 1 ) and 
B ( q = 0 ). For q ≳ 0.6 , the 
local maximum is surpassed 
by the pure CG material. For 
the largest possible cylindri-
cal inclusions, the maximum 
is obtained for the material 
model given by q ≈ 0.91.
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Figure 9  Stresses across a unit cell along the traction-free sur-
face at y = 0 (green), and in the interior at y = 0.5� (blue), y = � 
(red), and along the mid surface at y = 5� (black). The selected 
rheological model is for q = � , i.e., according to model B. While 
the unit cells assume almost identical results across the specimen 
in at least the region � ≤ y ≤ 9� , the shear stress, �xy , is insig-
nificant. Adding to this, the plane stress conditions imply that 

�x , �y and �z become the principal stresses. Further, �x is readily 
observed to be the largest principal stress. Of the shear stresses 
acting on the xz and the yz planes, i.e. �xz = �x∕2 and �yz = �y∕2 , 
�xz is the largest and constitutes a potential risk for onset of local-
ised shearing and thickness reduction, which is the only failure 
mechanism in the present paper.
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is already suggested by the right side of the curves 
in Fig. 10. Also, Table 2 suggests that the error is 
0.1% which is considered to be small compared to 
the numerically introduced errors at a normal FEM 
analysis.

The stress of interest displayed in Fig. 9 is the larg-
est principal stress. It is known to initiate cracks in 
brittle materials. Figure 9a shows that �

x
= �

1
 reaches 

around 550MPa in the UFG skeleton and around 
500MPa in the CG inclusion for the 77% UFG con-
tent. The model with 60% UFG has a marginally 
larger stress close to the middle of the UFG skeleton 
and significantly large in the CG inclusion close to 
the CG/UFG interface. For the largest inclusion hav-
ing 23% UFG content, the stress peak in the UFG 
skeleton is slightly less, i.e. around 540MPa but con-
siderably larger in the CG inclusions with a peak at 
610MPa at the traction-free surface, while it reaches 
580MPa in the interior of the specimen. The peak 
principal stress must of course be judged against the 
brittleness and sensitivity of each material. Such back 
/ forward stress ratios at the interface of UFG skel-
eton / CG inclusions, respectively, are in a very good 
agreement with our earlier experimental [31], ana-
lytical [30] and FE modelling [28] studies.

Figure 10 shows the stresses �
x
 and �

y
 along x = 5� 

for 0 ≤ y ≤ � and 2� ≤ y ≤ 3� . Also here at x = 5� the 

shear stresses vanish because of the symmetry across 
the y-axis, which makes �

x
 and �

y
 principal stresses. 

The result is representative of all unit cell bounda-
ries in this case for x∕� = 0 , 1, 2, 3, 4 and 5, since all 
unit cells in each row have identical states until the 
initiation of strain localisation. The variation of stress 
is periodic along the y-axis except for the unit cell 
closest to the traction-free surface, which confirms 
the results from Subsection 4.3

Figure 10a shows that �
x
= �

1
 . In the unit cell 

closest to the traction-free surface at 0 ≤ y ≤ 0.1 mm, 
for the 77% UFG content, the stress reaches around 
630MPa in the UFG skeleton and around 580MPa in 
the CG inclusion. In the same unit cell, for the inclu-
sion having 60% UFG content the stress peak in the 
UFG skeleton is around 600MPa and slightly less in 
the CG inclusions with a peak at around 490MPa. 
Finally, the 23% UFG content material has a principal 
stress peak in the UFG skeleton is around 560MPa 
and in the CG inclusions a peak at around 500MPa. 
It is interesting to note that the latter occurs in the 
middle of the inclusion as opposed to the smaller 
inclusions where the maximum is at the UFG/CG 
interface.

The result for the remaining unit cells the stresses 
are slightly lower for both 23%, 60% and 77% UFG 
contents. The drop of the principal stress is around 

Figure  10  �x = �1 , and �y , along the edge at x = 5� and 
0 ≤ y ≤ � . It is observed that the result from y ≥ 0.5� is close to 
that in the interior of the specimen for CG40/UFG60 and CG77/
UFG23. The interior is here represented by the solid curve, i.e. 

for 2� ≤ y ≤ 3� . For CG23/UFG77 the same would be from the 
upper edge of the inclusion. The stress �x is, as observed always 
to be the largest stress, which makes it the largest principal stress, 
i.e. �x = �1 , whereas �y and �z = 0 switch between �2 and �3.
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5%, 7%, 3% in the UFG skeleton and 18%, 6%, 2% in 
the CG inclusion for volumetric percentages UFG of 
77%, 60% and 23% respectively.

It is interesting to note that whatever stress-con-
trolled failure, e.g. cross-sectional necking, fatigue, 
crack initiation and fracture, is likely to start close to 
the traction-free surface. The strain localisation fol-
lowed by necking is observed to initiate at the traction-
free surface, cf. Subsections 4.8 and 4.9.

Contour plots of equivalent stress and plastic 
strain distributions.

The results for different fractions of the UFG phase for 
a load immediately before the ultimate load are shown 
in Fig. 11. Contour plots of von Mises true stress are 
marked a1 to a7, and plots marked b1 to b7, show the 
equivalent plastic strains associated with von Mises 
yield condition for a unit cell closest to the midplane 
of the specimen. Figure 11b shows the same as a, but 
for one of the unit cells closest to the traction-free 
boundary.

The same colour scale is used for all seven fractions 
for comparison reasons. Both the midplane cell (a) 

and the traction-free boundary cell (b) in the 5 × 5 cell 
model show that the largest stresses are concentrated 
in the UFG regions. This is a natural consequence of 
the geometrical reality that the UFG phase skeleton 
is continuous between the left and right ends of the 
specimen and that it has a much higher strength. The 
UFG phase skeleton carries a proportionally larger 
part of the load. As long as both are elastic they have 
the same stress due to their identical elastic proper-
ties. When plastic deformation sets in and the mate-
rial remains continuous the UFG material as being 
the hardest, will take the largest stress. For a more 
comprehensive discussion on the continued plastic 
deformation, cf. [28].

Formation of a specimen‑traversing region 
of localised strain

A required condition for the formation of a travers-
ing region of localised strain, i.e. a so-called neck, is a 
line-shaped region that only has strain increase across 
and no strain increase in the direction of it. Consider 
a thin homogeneous body that is exposed to uniaxial 

Figure  11  Contour plots a1 to a7 are von Mises effective 
stresses �e and b1 to b7 are the effective plastic strains �p

e
 . The 

first and second rows, marked a, are for the upper cells closest to 
the specimen midplane and the third and fourth rows, marked b, 

are the cells closest to the traction-free surface. The numbering 
of a1, b1, a2, b2, etc. refers to the UFG skeleton of volumetric 
fractions 77, 70, 60,...30 and 23%.
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stress �
o
 . A straight necking line forming at an angle 

�
n
 to the direction of the tension, according to rules for 

2D transformation of coordinate directions, becomes

(8)
�
n
= �

o
cos

2 �
n
and �

t
= �

o
cos

2(�∕2 + �
n
) = �

o
sin

2 �
n
.

The von Mises plastic strain increments are propor-
tional to the deviatoric stress. Thus, using Eq. 8 the 
strain increment, d�

n
 , along the necking line becomes

which readily gives that d�
n
= 0 when

Figure 12 shows contour plots of the equivalent 
plastic strain for the 5 × 5 cells model closely before 
initiation of global structural instability for rheologic 
model B. The figure shows the spots of the largest 
plastic deformation encircled by black circles. The 
distortion of elements starts in the UFG areas that have 
large and moderate percentages of UFG phases (see 
Fig. 12b1-b5).

The necking in these models initiates in UFG areas 
close to the interface between the UFG-CG phases 
interface. The subsequent propagation proceeds in the 

(9)

d�
n
= d�

(

�
n
−

1

3

(
�
t
+ �

n

)
)

= d� �
o

(

cos
2 �

n
−

1

3

)

,

(10)���n
�� = arccos

�
1∕

√
3

�
≈ 54.7

◦

Figure 12  Contour plots for equivalent plastic strain for differ-
ent UFG fractions at the early start of element distortion for 5 × 5 
unit cells a1–a7 and enlarged parts b1–b7. The numbers 1-7 indi-

cate the UFG skeleton of volumetric fractions 77, 70, 60,...30 and 
23%, respectively.

Table 3  The orientation of the necking region traversing the 
specimen for different UFG contents as measured in the unde-
formed representation of Fig. 12. The measured angle �∗

n
 is con-

verted to the true physical angle �n via Eq. 11

% UFG �x = u∕� �y = v∕� �∗
n

�n

23 0.670 0.145 72
◦

60
◦

30 0.700 0.291 66
◦

55
◦

40 0.663 0.293 65
◦

54
◦

50 0.576 0.265 64
◦

54
◦

60 0.470 0.219 66
◦

55
◦

70 0.451 0.223 64
◦

53
◦

77 0.352 0.167 64
◦

53
◦

Figure 13  Contour plots for the progression of the localised equivalent plastic strain of the 5 × 5 cells a1–a7 and enlarged parts b1–b7. 
As in Fig. 12, the numbers 1-7 represent the UFG volumetric fractions 77, 70, 60,...30 and 23%.
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CG areas along a direction in the range from 53◦ to 60◦ 
against the tensile direction (see Fig. 12 a1–a7). Due 
to the limited UFG fraction between the adjacent CG 
areas in 30% and 23% of UFG areas, the neck starts at 
the adjacent area between CG areas and UFG areas, 
then it also propagates locally with almost 45◦ , after 
a short almost vertical growth (see Fig. 12b6 and b7).

The plots in Fig. 12 are presented in undeformed 
states, which gives an apparently larger slope than the 
true one.

Table 3 shows the apparent angle �∗
n
 as given in 

Fig. 12 is translated to the real angle by using

Figure 13 shows contour plots of the obtained von 
Mises equivalent plastic strains for the different frac-
tions after distortion of elements, for 5 × 5 cells a1–a7 
and enlarged one cell with meshed elements b1–b7. 
The scale has been fixed for comparison reasons both 
as regards the different fractions and the result in 
Fig. 12. The results show that almost all fraction mod-
els have the same necking pattern.

Conclusions

In the interest of understanding the effect of the 
UFG fraction on the mechanical behaviour of HS 
materials, seven rheological pairs with different 
yield stresses and hardening rates were used for 
19 different fractions of UFG phases embedding 
uniformly distributed CG inclusions into a skeletal 
network. This makes 133 cases, together with a few 
special cases, analysed for monotonically increasing 
elongation up to and slightly beyond the maximum 
load and strain localisation. Based on the reported 
results, the following conclusions are made:

• The largest elongation is obtained for the 
rheological model A, i.e. the HS material model 
with the highest hardening rates. The optimal 
fraction of the UFG phase providing maximum 
uniform elongation is close to 60%. At the same 
time, the ductility of HS material may supersede 
that of CG counterpart already at 40% UFG.

• The presence of even the smallest inclusions gives 
a severe drop in maximum load as compared 

(11)�
n
= arctan

sin(�∗
n
)(1 + �

y
)

cos(�∗
n
)(1 + �

x
)
.

with the pure UFG material and a drastic drop 
of elongation at maximum load. This is expected 
while the local stress distribution, on the level of 
the inclusion, becomes finite and independent 
of the inclusion size for infinitesimally small 
CG inclusions. For the UFG phases with the 
highest hardening rates, the drop in elongation 
at maximum load is up to 20%.

• Necking traversing the specimen occurs at 53◦ to 
55◦ to the loading direction for all CG inclusion 
volumes apart from the largest, i.e. 77% vol. CG 
that forms a necking region 60◦ to the loading 
direction. The observation is surprisingly close to 
the theoretical 54.7◦ for homogeneous materials 
that comply with the von Mises yield criterion 
and flow rule.

• The stress and strain states develop identically 
in all columns of unit cells before the maximum 
load is reached. Within each column, the state of 
the individual unit cells is almost identical within 
a difference in load of less than 0.1%, except for 
the unit cell closest to the traction-free boundary. 
The very limited influence of the traction-free 
boundary indicates that a specimen model of 1 × 2 
unit cells should be sufficient for the prediction 
of loads prior to strain localisation for any larger 
specimen. The result is readily given by a simple 
algebraic relation. For specimens with many unit 
cells, a single unit cell should be sufficient.
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