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ABSTRACT
In this work, a hybrid modeling approach, combining machine learning (ML) 
and computational thermodynamics, has been applied to predict deformation-
induced martensitic transformation (DIMT) and explore the generic and alloy-
specific parameters governing DIMT in austenitic steels. The DIMT model was 
established based on the ensemble ML algorithms and a comprehensive set of 
physical variables. The developed model is highly generalizable as validated on 
unseen alloys. The generic governing parameters of DIMT are in good agreement 
with previous studies in the literature. However, the evaluated alloy-specific 
governing parameters reveal large differences between grades, e.g., 204 series of 
austenitic stainless steels has a quite balanced correlation between strain, stress, 
temperature, and DIMT, while the 301 series has much stronger correlation 
between stress and DIMT. The findings in the current study emphasize the 
importance that a general DIMT model for steels should include both stress and 
strain, as well as other governing parameters, since DIMT can be both stress-
assisted and strain-induced transformation, and often the effect of applied 
mechanical driving force and the formation of new nucleation sites interact.

Received: 16 March 2023 
Accepted: 27 December 2023 
Published online: 
12 February 2024 

© The Author(s), 2024

Handling Editor: Megumi Kawasaki.

Address correspondence to E-mail: xuwei@ral.neu.edu.cn; pheds@kth.se

http://orcid.org/0000-0003-1102-4342
http://crossmark.crossref.org/dialog/?doi=10.1007/s10853-023-09325-2&domain=pdf


	 J Mater Sci (2024) 59:3087–3100

GRAPHICAL ABSTRACT 

Introduction

Current development of advanced steels makes 
frequent use of the austenite phase and the 
transformation-induced plasticity (TRIP) effect to 
improve strain hardening, ductility, and toughness. 
The TRIP effect originates from deformation-induced 
martensitic transformation (DIMT), where the 
metastable austenite (fcc) is transformed to α´- and 
ε-martensite during the deformation [1]. Olson and 
Cohen [2] suggested that DIMT can occur as either 
stress-assisted when the applied stress is below the 
yield strength of the steel or as strain-induced when 
the applied stress is above the yield strength and when 
plastic deformation precedes DIMT. It is generally 
believed that stress, contributing a mechanical driving 
force, is more important than the contribution from 
strain generating new potent nucleation sites [3–5]. 
However, it is well known that α´-martensite tends 
to form preferentially at nucleation sites arising due 
to the deformation of the austenite [6]. Moreover, 
the dislocations from plastic strain can also retard or 
prevent DIMT by hindering movement of austenite/
martensite interfaces [7]. Hence, the effect of strain and 
stress on DIMT is complex.

In order to reveal the governing parameters, numer-
ous studies have been performed for specific alloys. 
Das et al. [4] could predict DIMT using the Koistinen 
and Marburger equation including only stress, and 

Chatterjee et al. [3] investigated DIMT in TRIP steels 
and presented that the variation in austenite fraction 
can be well modeled as a function of applied stress. 
However, there are also many modeling studies that 
have also treated the DIM fraction as a function of 
strain [8, 9]. Considering strain-induced transforma-
tion, in this case only referring to when plastic defor-
mation and DIMT occur simultaneously without stat-
ing the main governing parameter, the Olson-Cohen 
model is the most commonly applied. The original 
Olson-Cohen model has been developed in multiple 
steps to consider various physical parameters affecting 
DIMT such as strain rate [10], stress state [11], aus-
tenite grain size [12], and pre-existing α´-martensite 
[13]. These models can be used in a narrow parameter 
space after fitting with experimental data, but a more 
general model capable of predicting DIMT, where also 
the potential difference of governing parameters for 
different alloys and systems could be revealed, is lack-
ing to date. Machine learning (ML) has been widely 
applied to find relations among composition/process-
ing, microstructural features, and target properties 
[14, 15], also for DIMT behavior in specific systems 
[4, 16–18]. The above studies confirm the feasibility 
of applying ML methods to predict DIM fraction, but 
they fail to achieve satisfactory general predictions of 
DIMT due to insufficient number of training samples. 
Furthermore, in those studies little attention has been 
paid to physical metallurgy (PM) parameters. This 
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also means that although some discussion of govern-
ing parameters of DIMT has been provided in previ-
ous studies [16], there is no comprehensive discussion 
of the governing parameters of DIMT based on all/
most PM parameters using advanced statistical anal-
ysis by ML. We therefore aim to build a ML model 
that accounts for PM parameters, including param-
eters calculated from computational thermodynamics. 
A predictive model of DIMT is established, and we 
comprehensively investigate the correlation between 
features and DIMT for austenitic steels in general and 
also break this down into specific alloys to investi-
gate if the governing parameters vary between alloy 
systems.

Model development

Database

The database was further developed from a prior work 
[19] containing 2801 original datapoints from austen-
itic stainless steels (ASSs), such as the 201 series, 204 
series, 301 series, 304 series, 309, 316, and also other 
related experimental alloys (Misc.). All these steels 
have a fully austenitic structure prior to deforma-
tion. In order to investigate the effect of the governing 

parameters on DIMT, the following features were 
included: strain, stress, strain rate, temperature, aus-
tenite grain size, driving force for α′-martensite trans-
formation (DFfcc-bcc), and driving force for ε-martensite 
formation (DFfcc-hcp). α′-martensite fraction was the 
target to be predicted. In this database, α′-martensite 
fraction was mainly measured by saturation magneti-
zation and x-ray diffraction (XRD) methods and the 
measurement error was less than 3% [20], satisfying 
the establishment of a reliable ML model. The data-
base constitution is summarized in Table 1. Strain, 
stress, strain rate, and temperature were directly read 
from the related literature. The austenite grain size 
was most often taken from the reported values in μm, 
in some cases though grain size was given as an ASTM 
number, which were in such case transformed to μm 
based on ASTM E112 [21]. In other cases, the grain 
size was evaluated based on the micrographs reported 
in literature. Finally, in a few cases no grain size or 
microstructure information was provided in the origi-
nal report, and in those cases the average value of the 
grain size in the database was used. Driving forces for 
both α′-martensite and ε-martensite were calculated 
by Thermo-Calc® software 2021b [22] using TCFE11 
database [23]. The reason to include also ε-martensite 
is that DIMT is related to the stacking fault energy 
(SFE) which relates to DFfcc-hcp [2]:

Table 1   A summary of the 
database used in this study. 
Composition is in wt.%, 
stress in MPa, SR (strain 
rate) in s−1, and GS (grain 
size) in μm; temperature in 
℃, and DFfcc-bcc and DFfcc-hcp 
being the driving forces 
for transformation from 
austenite to α′-martensite and 
ε-martensite in J/mol

Grade 201 series 204 series 301 series 304 series 309 316 Misc.

C 0.03–0.05 0.04–0.08 0.001–0.15 0.006–0.79 0.054 0.02 0–0.97
N 0.2 0.04–0.24 0.01–0.17 0–0.075 0.05 0.08 0–0.31
Cr 17.0–17.5 15.0–15.4 16.6–17.6 13.4–18.7 22.1 16.2 0–18.3
Ni 3.7 1.1–2.8 6.4–7.8 8.0–9.2 12.1 10.0 0–22.8
Mn 6.7–7.4 8.9–9.0 1.1–2.0 0.9–2.0 1.9 1.7 0–20
Mo 0.01–0.05 0–0.03 0–0.8 0–0.35 0.21 2.0 0–4.1
Si 0.28–0.32 0.40–0.44 0.43–1.50 0.18–0.62 0.32 0.5 0–3
Cu 0.05–0.23 0–1.68 0–0.25 0–0.91 0.35 0.34 0–0.12
Co 0 0–0.05 0–0.14 0–0.2 0.15 0.13 0
Nb 0 0–0.001 0–0.05 0–0.015 0.02 0 0
Strain 0.37–0.57 0–0.5 0–0.65 0–0.90 0–0.3 0–0.58 0–0.78
Stress 950–1969 0–1673 0–1715 0–2307 0–863 0–1992 0–2000
SR (10–4) 5–100 1.3–1300 1.0–2.0 × 106 1.3–107 1.3 0.5 0.6–10
GS 15–26 0.5–40 1.2–33 7–90 30 90 7–170
Temperature − 80 ~ 100 25 − 173 ~ 80 − 196 ~ 80 24 − 196 ~ 27 − 196 ~ 100
DFfcc-bcc (103) 1.5–2.5 1.7–2.3 2.3–4.3 1.5–4.0 2.1 2.4–3.6 − 0.5–4.0
DFfcc-hcp (102) − 2.0 ~ 2.5 − 2.3 ~ 3.5 − 1.8 ~ 14.6 − 3.0 ~ 13.9 8.2 4.7–11.2 − 13.4 ~ 14.1
Data size 28 366 984 691 8 23 701
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where � is atom density in a close packed plane in 
moles per unit area; ΔG�→� is the free energy for trans-
formation from austenite to ε-martensite, which is 
equal to the negative value of DFfcc-hcp. Estrain is the 
strain energy for the transformation from austenite to 
ε-martensite and ��∕� is the interfacial energy of the γ 
and ε phase boundary. Estrain is generally neglected 
in austenitic steel and the parameters � and ��∕� can 
be assumed to be constant [24]. The constitution of 
the PM parameters and the output in the database is 
shown in Fig. 1. 

(1)SFE = 2�

(

ΔG�→� + E
strain

)

+ 2
�∕� ML modeling

In the present work, a train–test split approach was 
applied where the dataset was randomly separated 
into a training dataset (80% of the data) and a test 
dataset (20% of the data). Normalization was applied 
to eliminate the difference in the numerical range 
among different input features, and the inputs are 
scaled to the range from 0 to 1. Based on the previous 
modeling results, it is found that the prediction of the 
trained ML model fluctuates for different partitions 
of the training and test sets; hence, multiple hold-out 
datasets were used to reliably evaluate the perfor-
mance of the model [25]. The dataset was randomly 
divided into training and testing sets to develop 100 
ML models, and model evaluation was performed by 
the squared correlation coefficient (R2), mean absolute 
error (MAE), and root mean square error (RMSE).

Figure 1   Statistical distribution of PM features and the output.
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Six ML algorithms were applied to build the corre-
lation between input features and the DIM fraction: 
(1) multilayer perceptron (MLP), a kind of artificial 
neural network, consisting of the neuron layers and 
the neuron clusters in each layer, which has been 
widely used to address material science challenges 
[26]; (2) support vector regression (SVR), a statisti-
cal learning regression algorithm based on structural 
risk minimization principle [27], suitable to develop 

models in the case of the small amount of samples; 
(3) decision tree regression (DTR), it belongs to the 
nonparametric models of supervised learning used 
for regression analysis, which originates from a 
binary tree that splits into more nodes to develop a 
decision tree [27]; (4) ensemble learning regression, 
including random forest regression (RFR), Adaboost 
(Ada), and XGBoost (XGB), a sort of multi-regression 
system, which integrates the multiple learners to 

Figure 2   Prediction accuracy for different algorithms using multiple hold-out datasets and statistical error representations a MAE and b 
R2.

Table 2   RMSE values of 
testing set for each grade

Grade 201 series 204 series 301 series 304 series 309 316 Misc.

RMSE 0.042 0.024 0.044 0.036 0.005 0.029 0.052

Figure 3   Experimental values vs. predicted values from the XGBoost method: a testing dataset; b unseen validation dataset.
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complete the modeling [28]. The grid search tech-
nique is applied to optimize the hyper-parameters of 
each ML models, and the optimal hyper-parameter 
range and key hyper-parameters of 100 models for 
each ML algorithm are shown below: (1) MLP (acti-
vation = relu, solver = lbfgs, size of first hidden layer: 
30, size of second hidden layer: 20); (2) SVR (penalty 
parameter C: 45–49, kernel function = RBF); (3) DTR 
(maximum depth of tree: 42–71); (4) RFR (number of 
estimators: 58–94); (5) Ada (number of estimators: 
66–85, base estimator: DTR); (6) XGB (number of 
estimators: 33–42, learning rate = 0.1). The modeling 
implementation was conducted using Python and 
the Scikit-learn library. The prediction results of the 
testing set are shown in Fig. 2. It can be seen that 
the ensemble methods have better prediction accu-
racy than MLP, SVR, and DTR algorithms, which is 
consistent with the previous work [19]. Among the 
ensemble methods, random forest regression (RFR) 
obtains the largest MAE value, while Adaboost 
(Ada) and XGBoost (XGB) achieve similar accuracy 
in both MAE and R2 values. Finally, XGBoost was 
selected as the final algorithm due to its slightly bet-
ter performance.

Results and discussion

Prediction results

For the training dataset, the values of RMSE and R2 
are 0.025 and 99.3%, which indicates that the trained 
ML model has fully learned the “knowledge” from 

the training data. With respect to the testing set as 
shown in Fig. 3a, most data points lie on or close to 
the straight line with a slope of 1, indicating that the 
prediction results are in excellent agreement with the 
actual values for all kinds of grades. The RMSE and 
R2 values of the whole testing dataset are 0.042 and 
97.1%. Additionally, 479 of 541 testing data entries 
have the absolute errors between experimental and 
predicted values within 0.05, and no large deviations 
occur anywhere in the whole range of data, indicat-
ing that it has a good performance. The RMSE values 
for each grade are listed in Table 2. In order to further 
investigate the applicability, the trained model was 
applied for predictions on an unseen validation set 
containing alloys with other compositions or defor-
mation conditions; the results are shown in Fig. 3b. 
For 204Cu, the validation alloy with new grain size 
(16.4 μm) and strain rate (3 × 10–4 s−1) was collected 
from Ref [29], and it has a higher DIM fraction com-
pared to other 204Cu alloy (0.5–18 μm of grain size, 
5 × 10–4 s−1 of strain rate) in the training set [30]. The 
304SS validation alloy [31] with the new composi-
tion and a lower strain rate of 3 × 10–3  s−1 also has 
an obvious difference in DIMT behavior from 304SS 
alloy with strain rate of 3 × 10–1 s−1 and other alloys 
belonging to 304 series. Moreover, 301LN validation 
alloy [32] was deformed at a different strain rate com-
pared to the other 301 grades. However, as illustrated 
in Fig. 3b, the trained model is capable of accurately 
predicting the DIM fraction for all of the validation 
cases (RMSE: 0.0558, R2: 93.5%), showing the excellent 
generalizability. 

Figure 4   Feature importance analysis from ML models trained using a all the involved features and b only the PM features.
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In this work, the ML method was applied to predict 
the DIM fraction in a very complex dataset containing 
a range of austenitic steel grades. However, the pre-
diction accuracy is close to the previous studies that 
have only focused on one kind of austenitic stainless 
steels, such as AISI 304 [18] and AISI 301 [17]. Fur-
thermore, compared to the work of Das et al. [16], the 
current dataset has a wider composition range and 
obtains a slight improvement in terms of R2 value, 
i.e., 93.5% (present work) versus 88.3–95.6% (Das et al. 
[16]). Finally, the present prediction results are basi-
cally consistent with Ref. [19], but the amount of sam-
ples used in the current modeling process (2801 data 
points) is much less than in the previous study where 
synthetic data points were generated through physical 
modeling (16,500 data points).

Importance of features for DIMT

After establishing the predictive model, we investigate 
the correlation between composition, PM features, and 
DIMT based on feature importance analysis for the ML 
models. According to the modeling results, the feature 
importance was slightly different for the above four 
ensemble algorithms, and since each algorithm had 
an excellent goodness of fitting, we use the average 
results of feature importance from the algorithms (i.e., 
Ada, RFR, XGB and DTR) as final feature importance, 
see Fig. 4a. With respect to composition, carbon and 
nitrogen have the strongest correlation with DIMT 
and thereafter Mn, Cr, Si. For PM features, the high-
est importance is related to stress and thereafter strain 
and temperature. Strain rate and austenite grain size 
show relatively low importance for DIMT compared 
with other features.

Effect of strain and stress

The main governing parameter of DIMT behavior, i.e., 
stress or strain, have been discussed for a long time. 
Stress contributes to provide the mechanical driving 
force to overcome the barrier of transformation. Strain 
contributes to generate defects, e.g., shear bands and 
twins, to obtain new and potent nucleation sites 
for martensite and lower the driving force required 
for formation. Revealing these different governing 
mechanisms and which is the dominant feature 
relating to DIMT is important for deep understanding 
of the physical mechanisms. As illustrated in 

Fig. 4a, the present model shows that stress has a 
higher correlation than strain, and this result can be 
interpreted based on experiments and theoretical 
calculations. The study of Geijselaers et  al. [33] 
presented that the variation in DIMT rate is basically 
proportional to the change of mechanical DF based on 
the plane-stress biaxial test, indicating that the DIMT 
is mainly a stress-driven process. In most modeling 
studies, the DIMT formation has been considered as a 
function of plastic strain [8]. But I. Tamura [34] argued 
that the transformation should be established based 
on the applied stress rather than strain according to 
the fact that martensite transformation is activated 
mainly by the shear stress. Also, he proposed a stress-
driven model elaborating on the concept of mechanical 
driving force. Das et al. [4] only applied the stress 
value to reliably predict the DIM fraction based on 
the Koistinen and Marburger equation, without the 
consideration of strain. It is noted that the calculation 
result overestimated the martensite fraction, which 
further demonstrated that strain contributed very little 
to DIMT behavior. Chatterjee et al. [3] investigated the 
dominant mechanism of DIMT in TRIP-assisted steels 
and presented that the variation in austenite fraction 
can be well described by a function of applied stress by 
considering the mechanical DF, not strain. Moreover, 
their theoretical framework showed that the critical 
strain to transform austenite to martensite varies as 
a function of the composition and the temperature, 
but its contribution is certainly lower than the stress 
contribution [35]. In addition to kinetics, α′-martensite 
texture can also be predicted using the variant 
selection based on the mechanical DF provided by 
the applied stress, without the consideration of any 
intermediate transformation [36]. Moreover, the data-
driven analysis supports the present result as well. 
Das et al. [16] used the ML method to analyze the 
quantitative correlation between these two factors and 
DIM fraction and presented that stress has a stronger 
effect than strain.

Effect of chemical elements

In general, the chemical composition controls the 
DIMT by affecting the chemical DF and SFE [37]. The 
two interstitial elements, i.e., C and N, show a very 
high correlation with DIMT. The addition of these 
elements can improve both the mechanical stability 
of austenite against martensite transformation by 
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reducing the chemical DF [38, 39]. Moreover, C addi-
tion results in an obvious SFE increase for austenite 
[40], but the effect of N addition on SFE is uncertain; 
it depends on the host alloy composition [40–42]. 
Furthermore, it is still controversial whether C or 
N is more important for DIMT [43–45]. Masumura 
et al. [43] reported that the mechanical stability of 
C-added steel is higher than that of N-added steel 
based on 304 grade, and microstructure characteri-
zation shows that twins and ε-martensite are pref-
erentially formed in C-added steel, contributing to 
suppress the growth of α′-martensite. But N-added 
steel with a higher SFE preferentially develops dislo-
cation cell structures. Saenarjhan et al. [45] presented 
an opposite result based on an experimental steel 
(15Cr-15Mn-4Ni based ASSs), in which N-added 
steel obtains a higher mechanical stability because 
N-added steel also can develop ε-martensite, con-
tributing to suppress transformation. In austenitic 
stainless steel, the SFE level determined by DFfcc-hcp 
highly affects the type of deformation microstruc-
ture. The DFfcc-hcp distribution of the present dataset 
and the data in Refs. [43, 45] is plotted in Fig. 5. It is 
clearly seen that most samples in the dataset have rel-
atively large DFfcc-hcp values, which is similar to the 
distribution from the work of Matsumura et al., i.e., 
C obtains a higher importance than N. Apart from 
C and N elements, other elements show a relatively 
low importance. Moreover, the two DF variables that 
strongly affect the austenite stability also obtain low 
correlation. These results could be attributed to the 

overlap of the inputs because the two DF variables 
are determined by the steel composition. In order 
to show the true correlation to the DFs, another ML 
model was trained without the compositional input, 
and the new feature importance is plotted in Fig. 4b. 
It is seen that only the importance of the DF vari-
ables changes significantly, and other PM variables 
remain stable. The correlation of DFfcc-hcp was greatly 
enhanced and exceeded the importance of strain rate 
and grain size, and the correlation of DFfcc-bcc exceeds 
the deformation temperature and is very close to 
strain, showing the close relation between the two 
DFs and the austenite stability.

Effect of prior austenite grain size

With respect to prior austenite grain size, a general 
conclusion is that the increasing grain size is beneficial 
to increase DIMT owing to the decreasing austenite 
stability [46–48]. For instance, Jung et al. [47] found 
the starting temperature of transformation is linearly 
lowered by a reduction in austenite grain size in 
301 and 304 grades. The experimental results of 
Varma et  al. [46] show that martensite formation 
can be enhanced by using large austenite grain size 
in 304 and 316 grades. However, specific studies 
show conflicting findings. Shrinivas and co-workers 
reported that the volume fraction of martensite formed 
is basically unchanged as the grain size changes from 
77 to 200 μm in 316SS [49]. Moreover, Kisko et al. 
[30] found an anomalous experimental result based 
on 204Cu grade; the steel with a ultrafine grain size 
of 0.5 μm had a higher transformation rate than the 
steels with relatively larger grain sizes of 1.5 μm, 4 
μm, and 18 μm. Recently, Sohrabi et al. [50] found 
a transition when the prior austenite grain size is in 
the range of 34–90 μm. DIMT can be promoted when 
increasing the grain size up to the transition range, but 
it is suppressed at coarser grain sizes. Based on the 
above analysis, it is concluded that austenite grain size 
does not have a clear effect on DIMT and the relation 
can depend on the steel grade because factors such as 
effective SFE and nucleation sites can have different 
importance in different grades. Thus, a relatively low 
correlation was obtained for prior austenite grain size.

Figure 5   DFfcc-hcp distributions of dataset and literature [43, 45].
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Effect of strain rate and temperature

One of the improvements in the current database 
compared with our previous DIMT model [19] is 
including the data entries with various strain rates. 
The former database only focused on low strain rate 
(< 0.001 s−1). For the case of strain rate, most studies 
show that the increase generally suppresses the 
formation of DIM [51–53], which can be explained 
by the decrease in the chemical DF caused by the 
adiabatic heating and the formation of irregular shear 
band arrays. In contrast, the experimental results of 
Talonen et al. [54] show that the change of strain rate 
from 3 × 10–4 to 2 × 102 s−1 has an obvious influence, 
decreasing the transformation in 301 grades. But the 
DIM fraction does not show the obvious alteration 
in the 304 grades with an inherent  relatively high 
mechanical stability. Furthermore, the high strain rate 
was not found to promote the DIM formation at a low 
strain range, contrary to the experimental observations 
of Hecker et al. [51]. The relatively weak correlation of 
strain rate and DIMT as well as some unclear effects 
observed in different grades in the literature causes the 
low feature importance of strain rate.

Additionally, the deformation temperature directly 
determines the chemical DF and SFE. This factor has 
a very clear and strong effect on the formation of 
DIM [55, 56], so the feature achieves a relatively high 

importance, larger than austenite grain size and strain 
rate.

Feature importance for specific steel grades

The correlation of each feature and DIMT has been 
generally analyzed for the whole dataset containing 
various grades of austenitic stainless steels in the 
last section, and it can be found that the correlation 
of some PM features varies among different steel 
grades. So, it is necessary to critically analyze the 
feature importance for the specific grades. In general, 
a ML model was supposed to be firstly trained by 
samples from the specific grades in order to obtain 
its importance analysis. But the sub-dataset of each 
steel grade does not contain enough samples and has 
the very narrow range of each feature, e.g., chemi-
cal composition, which increases the difficulty for 
training a reliable model. Instead in this work, a 
method is proposed to calculate the feature impor-
tance of the specific steel grade, in which samples 
of the target grade were removed from the dataset 
and a new feature importance was obtained from the 
new model trained by the rest of the samples. In this 
case, compared to feature importance of the whole 
dataset (Fig. 4a), a change of the importance value 
was attributed to the removed samples of the tar-
get grade. If the importance value of some features 
decreases, it indicates that these features are very 
important for target grade. Conversely, the increase 
in importance value represents a low correlation. 
This analysis method was applied to two series of 
austenitic stainless steels to investigate their respec-
tive feature importance, including 204 series (204Cu, 
204 M, 204SS) and 301 series (301, 301L, 301LN), and 
it has been proved that 204 series has the higher aus-
tenite stability than 301 series according to the previ-
ous studies [57, 58]. Figure 6 displays the change of 
importance value for these selected grades. 301 series 
and 204 series display the totally different results. 
With respect to 301 series, stress greatly increases the 
correlation owing to the obvious reduction in impor-
tance value, and the strain and temperature become 
less important. This grade has the relatively low 
austenite stability owing to the low SFE value, e.g., 
�
SFE

 = 14.7 mJ m−2 for 301SS [57]. The low austenite 
stability indicates that transformation can start in a 
wide temperature range with a high upper tempera-
ture limit and has a low requirement for extra chemi-
cal DF from the decrease in temperature, resulting in 

Figure  6   Change of feature importance when either the data 
of 204 or 301 series are removed. Positive values represent the 
decrease in correlation for the target grade, and negative values 
stand for increasing correlation.

3095



	 J Mater Sci (2024) 59:3087–3100

a relatively low correlation of deformation tempera-
ture. Moreover, the nucleation sites, e.g., shear bands 
and ε-martensite, can be easily obtained when the 
applied strain is very small owing to the low SFE. So, 
the key point governing DIMT is applied stress that 
provides extra mechanical DF to transform nuclea-
tion sites into α′-martensite, instead of applied strain 
that produces nucleation sites. With respect to 204 
series, the correlation of stress and strain slightly 
decreases and goes up, respectively. The deforma-
tion temperature’s correlation obtains an obvious 
increase considering the decrease in feature impor-
tance. Combining with feature importance of the 
whole dataset as shown in Fig. 4a, it can be seen that 
204 series achieves a better balance among stress, 
strain, and temperature. This grade has a high aus-
tenite stability and high SFE, e.g., �

SFE
 = 16.8 mJ m−2 

for 204SS [57]. The high SFE represents the difficulty 
for forming the new nucleation sites [24], and DIMT 
process may be more dependent on the existing sites. 
In this case, the applied stress is essential to provide 
mechanical DF to transform the stable nucleation 
sites with the high activation energy. In addition, 
a relatively large plastic strain is also important to 
produce the new nucleation sites for further mar-
tensite transformation. Moreover, 204 series have a 
low chemical DFfcc-bcc, which also means the extra 

chemical DF from temperature reduction is impor-
tant to induce transformation.

A mathematical explanation is also given to clarify 
the great variation in importance of strain, stress, and 
temperature based on the Pearson’s coefficient. As 
shown in Fig. 7a, stress obtains a higher linear cor-
relation than strain and temperature, showing that 

Figure 7   Pearson’s correla-
tion coefficient calculated 
by a the whole dataset, 
removing b 301 series and c 
204 series from the dataset, 
respectively.

Figure  8   Prediction accuracy of ML models trained by all the 
features used in the present work, and only the features used in 
the previous work [19]. The dataset used for both models is the 
one presented in this work.
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stress should contribute more to the development of 
the ML model, which is consistent with the feature 
importance in Fig. 4. When removing the samples 
belonging to the 301 series from the dataset (Fig. 7b), 
the correlations of DIMT with strain and tempera-
ture increase and stress decrease (Fig. 7a), indicat-
ing that stress has a very strong correlation with α′-
martensite fraction in 301 series. When removing the 
204 series from the dataset (Fig. 7c), stress obtains a 
higher correlation, but the values of strain and tem-
perature reduce compared to the whole dataset, also 
indicating that strain has a relatively higher correla-
tion to α′-martensite transformation as compared to 
the 301 series.

With respect to strain rate and grain size, these 
factors show the decrease in importance values, 
indicating that they are both important for these 
two kinds of austenitic stainless steels. Generally, 
according to statistical analysis, 301 series are 
very different from 204 series in terms of DIMT 
behavior. 301 series with the low austenite stability 
is only highly related to applied stress, but 204 
series have a higher requirement for the induction 
of martensite transformation, and strain, stress, 
and temperature all show high correlation. For the 
chemical composition, there are basically no obvious 
changes. Only a change occurs for molybdenum, and 
its importance reduces for 204 series because this 
grade contains very low level of molybdenum [29, 
30]. The importance of carbon and nitrogen increases 
in 301 series, indicating the high correlation to DIMT.

Comparison with previous DIMT model

In the previous work of Ref. [19], a prediction model 
for DIMT was developed combining physical-based 
modeling and ML method. In order to improve the 
robustness of the trained ML model, a large dataset 
was built combining experimental data and physical 
modeling data using Olson-Cohen model, which pro-
vides the new methodology to combination of phys-
ical-based method and ML. The present work selects 
another combination method that introduces numer-
ous related PM features into the original experimental 
dataset for model training, as listed in Table 1. For the 
prediction accuracy, the current result is very close 
to that of previous work, e.g., the RMSE of testing set 
(0.0420 vs. 0.0415), 301 series (0.0451 vs. 0.0479), and 
304 series (0.0372 vs. 0.0380). But it is worth noting 
that the present dataset only contains 2801 samples 

which is significantly smaller than that of previous 
dataset consisting of 16,500 samples. Furthermore, 
in order to compare in a fair way, a new ML model 
was trained based on present dataset, but using fea-
tures of previous work, i.e., composition, strain, and 
temperature. From the results in Fig. 8; it can be seen 
that ML models trained by present features are clearly 
improved than those using the previous features for 
each algorithm. The good performance can be inter-
preted by fully mining the existing data using addi-
tional PM features. In the present work, in addition 
to strain and temperature used in the previous work, 
stress, strain rate, and grain size and two kinds of DF 
were also included in the dataset; especially, applied 
stress is found to be the most important feature for 
DIMT prediction according to the importance analysis 
and previous studies [4, 16, 36] and strongly controls 
the DIMT process. The introduction of such crucial 
features aids to lower the requirement for the num-
ber of samples for training a robust model, also con-
tributing to alleviating the small sample problem. For 
correlation analysis, in the previous work, strain and 
temperature show the very strong correlation, which is 
much higher than the composition. A large gap exists 
between PM features (strain and temperature) and 
composition, implying the absence of other related 
features. The present study introduces these missing 
features into modeling process and displays a whole 
roadmap for the correlation between various PM fea-
tures and DIMT, contributing to a better understand-
ing of PM mechanism.

Conclusions

A new predictive model for DIMT was presented 
in the current work based on the ensemble machine 
learning method combining chemical composition and 
various physical metallurgy features. A systematic 
analysis of the correlation between various factors 
and DIMT in general and for specific alloys was 
performed. The following conclusions can be drawn:

(1)	 The trained ML model achieved a high prediction 
accuracy in testing data with a R2 value greater 
than 97%, and a good robustness was validated 
by accurately predicting the DIM fraction of 
unseen alloys.
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(2)	 Feature importance analysis shows that for 
austenitic steels in general the most important 
physical metallurgy feature is stress and there-
after strain and temperature. However, the most 
important features vary for specific alloy grades. 
For example, applied stress strongly affects the 
DIMT behavior of 301 series, while for the 204 
series, there is a stronger balance of the correla-
tions among strain, stress, and temperature. This 
is due to the general higher austenite stability of 
the 204 series.

(3)	 Comparing to the authors’ previous DIMT model, 
the introduction of new physical metallurgy 
features in this study assists the development of a 
robust model with lower requirements on dataset 
size. It further helps to give a comprehensive 
view of the correlation between DIMT and the 
governing physical parameters.

Acknowledgements 

EIT Raw Material project ENDUREIT (Project No. 
18317) is acknowledged by W.M. and P.H. for the 
financial support. C. S. would like to acknowledge the 
support from the China Scholarship Council (CSC No. 
No.202006080092).

Funding

Open access funding provided by Royal Institute of 
Technology.

Data availability 

The raw/processed data required to reproduce these 
findings cannot be shared at this time as the data also 
form part of an ongoing study.

Declarations 

Conflict of interest The authors declare that they 
have no known competing financial interests or per-
sonal relationships that could have appeared to influ-
ence the work reported in this paper.

Open Access This article is licensed under a Crea-
tive Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. 
The images or other third party material in this ar-
ticle are included in the article’s Creative Commons 
licence, unless indicated otherwise in a credit line to 
the material. If material is not included in the article’s 
Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission di-
rectly from the copyright holder. To view a copy of 
this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

[	1]	 Injeti VSY, Li ZC, Yu B, Misra RDK, Cai ZH, Ding H 
(2018) Macro to nanoscale deformation of transformation-
induced plasticity steels: impact of aluminum on the micro-
structure and deformation behavior. J Mater Sci Technol 
34:745–755

[	2]	 Olson GB, Cohen M (1976) A general mechanism of mar-
tensitic nucleation: part I. General concepts and the FCC 
→ HCP transformation. Metall Trans A 7:1897–1904

[	3]	 Chatterjee S, Bhadeshia HKDH (2007) Transforma-
tion induced plasticity assisted steels: stress or strain 
affected martensitic transformation? Mater Sci Technol 
23:1101–1104

[	4]	 Das A, Chakraborti PC, Tarafder S, Bhadeshia HKDH 
(2011) Analysis of deformation induced martensitic 
transformation in stainless steels. Mater Sci Technol 
27:366–370

[	5]	 Perdahcıoğlu ES, Geijselaers HJM, Groen M (2008) Influ-
ence of plastic strain on deformation-induced martensitic 
transformations. Scr Mater 58:947–950

[	6]	 Tian Y, Gorbatov OI, Borgenstam A, Ruban AV, Hedström 
P (2017) Deformation microstructure and deformation-
induced martensite in austenitic Fe–Cr–Ni alloys depend-
ing on stacking fault energy. Metall Mater Trans A 48:1–7

[	7]	 Eres-Castellanos A, Caballero FG, Garcia-Mateo C (2020) 
Stress or strain induced martensitic and bainitic transforma-
tions during ausforming processes. Acta Mater 189:60–72

3098

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


J Mater Sci (2024) 59:3087–3100	

[	8]	 Angel T (1954) Formation of martensite in austenitic stain-
less steels. J Iron Steel Inst 177:165–174

[	9]	 Ludwigson DC, Berger JA (1969) Plastic behaviour of 
metastable austenitic stainless steels. J Iron Steel Inst 
207:63–69

[	10]	 Tomita Y, Iwamoto T (1995) Constitutive modeling of trip 
steel and its application to the improvement of mechanical 
properties. Int J Mech Sci 37:1295–1305

[	11]	 Stringfellow RG, Parks DM, Olson GB (1992) A consti-
tutive model for transformation plasticity accompanying 
strain-induced martensitic transformations in metastable 
austenitic steels. Acta Metall Mater 40:1703–1716

[	12]	 Iwamoto T, Tsuta T (2000) Computational simulation of 
the dependence of the austenitic grain size on the deforma-
tion behavior of TRIP steels. Int J Plast 16:791–804

[	13]	 Zheng C, Jiang H, Hao X, Ye J, Li L, Li D (2019) Tai-
loring mechanical behavior of a fine-grained metastable 
austenitic stainless steel by pre-straining. Mater Sci Eng A 
746:332–340

[	14]	 Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi 
A, Kim C (2017) Machine learning in materials informat-
ics: recent applications and prospects, npj Comput. Mater 
3:54

[	15]	 Raccuglia P, Elbert KC, Adler PDF, Falk C, Wenny MB, 
Mollo A, Zeller M, Friedler SA, Schrier J, Norquist AJ 
(2016) Machine-learning-assisted materials discovery 
using failed experiments. Nature 533:73–76

[	16]	 Das A, Tarafder S, Chakraborti PC (2011) Estimation 
of deformation induced martensite in austenitic stainless 
steels. Mater Sci Eng A 529:9–20

[	17]	 Mirzadeh H, Najafizadeh A (2008) Correlation between 
processing parameters and strain-induced martensitic trans-
formation in cold worked AISI 301 stainless steel. Mater 
Charact 59:1650–1654

[	18]	 Mirzadeh H, Najafizadeh A (2009) ANN modeling of 
strain-induced martensite and its applications in metastable 
austenitic stainless steels. J Alloy Compd 476:352–355

[	19]	 Mu W, Rahaman M, Rios FL, Odqvist J, Hedström P (2021) 
Predicting strain-induced martensite in austenitic steels by 
combining physical modelling and machine learning. Mater 
Des 197:109199

[	20]	 Shirdel M, Mirzadeh H, Parsa MH (2015) Nano/ultrafine 
grained austenitic stainless steel through the formation and 
reversion of deformation-induced martensite: mechanisms, 
microstructures, mechanical properties, and TRIP effect. 
Mater Charact 103:150–161

[	21]	 A. International, ASTM E112-13 (2013) Standard test 
methods for determining average grain size, ASTM Inter-
national, West Conshohocken

[	22]	 Andersson JO, Helander T, Höglund L, Shi P, Sundman B 
(2002) Thermo-Calc & DICTRA, computational tools for 
materials science. Calphad 26:273–312

[	23]	 TCFE11: TCS Steels/Fe-Alloys Database Version 9.0 
(2021) Thermo-Calc Software AB, Sweden

[	24]	 Wang X, Xiong W (2020) Stacking fault energy predic-
tion for austenitic steels: thermodynamic modeling versus 
machine learning. Sci Technol Adv Mater 21:626–634

[	25]	 Shen C, Wang C, Wei X, Li Y, van der Zwaag S, Xu W 
(2019) Physical metallurgy-guided machine learning and 
artificial intelligent design of ultrahigh-strength stainless 
steel. Acta Mater 179:201–214

[	26]	 Sumayli A (2023) Development of advanced machine 
learning models for optimization of methyl ester biofuel 
production from papaya oil: Gaussian process regression 
(GPR), multilayer perceptron (MLP), and K-nearest neigh-
bor (KNN) regression models. Arab J Chem 16:104833

[	27]	 Balogun A-L, Tella A (2022) Modelling and investigating 
the impacts of climatic variables on ozone concentration 
in Malaysia using correlation analysis with random forest, 
decision tree regression, linear regression, and support vec-
tor regression. Chemosphere 299:134250

[	28]	 Liu R, Liu Y, Duan J, Hou F, Wang L, Zhang X, Li G 
(2022) Ensemble learning directed classification and 
regression of hydrocarbon fuels. Fuel 324:124520

[	29]	 Papul S (2015) Delayed cracking of metastable low-nickel 
austenitic stainless steels. Department of Engineering 
Design and Production Engineering Materials, Aalto Uni-
versity, Espoo

[	30]	 Kisko A, Misra RDK, Talonen J, Karjalainen LP (2013) 
The influence of grain size on the strain-induced martensite 
formation in tensile straining of an austenitic 15Cr–9Mn–
Ni–Cu stainless steel. Mater Sci Eng A 578:408–416

[	31]	 Shen YF, Li XX, Sun X, Wang YD, Zuo L (2012) Twinning 
and martensite in a 304 austenitic stainless steel. Mater Sci 
Eng A 552:514–522

[	32]	 Petein A (2006) On the interactions between strain-induced 
phase transformations and mechanical properties in Mn–
Si–Al steels and Ni–Cr austenitic stainless steels. Univer-
sité Catholique de Louvain, Belgium

[	33]	 Geijselaers HJM, Perdahcıoğlu ES (2009) Mechanically 
induced martensitic transformation as a stress-driven pro-
cess. Scr Mater 60:29–31

[	34]	 Tamura I (1982) Deformation-induced martensitic trans-
formation and transformation-induced plasticity in steels. 
Met Sci 16:245–253

[	35]	 Chatterjee S, Wang HS, Yang JR, Bhadeshia HKDH (2006) 
Mechanical stabilisation of austenite. Mater Sci Technol 
22:641–644

3099



	 J Mater Sci (2024) 59:3087–3100

[	36]	 Kundu S, Bhadeshia HKDH (2006) Transformation texture 
in deformed stainless steel. Scr Mater 55:779–781

[	37]	 Sohrabi MJ, Naghizadeh M, Mirzadeh H (2020) Defor-
mation-induced martensite in austenitic stainless steels: a 
review. Arch Civ Mech Eng 20:124

[	38]	 Gavriljuk VG (2006) Austenite and martensite in nitrogen-, 
carbon- and hydrogen-containing iron alloys: similarities 
and differences. Mater Sci Eng A 438–440:75–79

[	39]	 Behjati P, Kermanpur A, Najafizadeh A (2013) Influence 
of nitrogen alloying on properties of Fe318Cr312Mn3XN 
austenitic stainless steels. Mater Sci Eng A 588:43–48

[	40]	 Lee T-H, Shin E, Oh C-S, Ha H-Y, Kim S-J (2010) Correla-
tion between stacking fault energy and deformation micro-
structure in high-interstitial-alloyed austenitic steels. Acta 
Mater 58:3173–3186

[	41]	 Stoltz RE, Vander Sande JB (1980) The effect of nitrogen 
on stacking fault energy of Fe-Ni-Cr-Mn steels. Metall 
Trans A 11:1033–1037

[	42]	 Soussan A, Degallaix S, Magnin T (1991) Work-hardening 
behaviour of nitrogen-alloyed austenitic stainless steels. 
Mater Sci Eng A 142:169–176

[	43]	 Masumura T, Nakada N, Tsuchiyama T, Takaki S, Koyano 
T, Adachi K (2015) The difference in thermal and mechani-
cal stabilities of austenite between carbon- and nitrogen-
added metastable austenitic stainless steels. Acta Mater 
84:330–338

[	44]	 Wendler M, Hauser M, Fabrichnaya O, Krüger L, Weiß 
A, Mola J (2015) Thermal and deformation-induced phase 
transformation behavior of Fe–15Cr–3Mn–3Ni–0.1N–
(0.05–0.25)C austenitic and austenitic–martensitic cast 
stainless steels. Mater Sci Eng A 645:28–39

[	45]	 Saenarjhan N, Kang J-H, Kim S-J (2019) Effects of carbon 
and nitrogen on austenite stability and tensile deformation 
behavior of 15Cr-15Mn-4Ni based austenitic stainless 
steels. Mater Sci Eng A 742:608–616

[	46]	 Varma SK, Kalyanam J, Murk LE, Srinivas V (1994) Effect 
of grain size on deformation-induced martensite formation 
in 304 and 316 stainless steels during room temperature 
tensile testing. J Mater Sci Lett 13:107–111

[	47]	 Jung Y-S, Lee Y-K, Matlock DK, Mataya MC (2011) Effect 
of grain size on strain-induced martensitic transformation 
start temperature in an ultrafine grained metastable auste-
nitic steel. Met Mater-Int 17:553

[	48]	 Lee C-Y, Yoo C-S, Kermanpur A, Lee Y-K (2014) The 
effects of multi-cyclic thermo-mechanical treatment on 
the grain refinement and tensile properties of a metastable 
austenitic steel. J Alloy Compd 583:357–360

[	49]	 Shrinivas V, Varma SK, Murr LE (1995) Deformation-
induced martensitic characteristics in 304 and 316 stainless 

steels during room-temperature rolling. Metall Mater Trans 
A 26:661–671

[	50]	 Sohrabi MJ, Mirzadeh H, Sadeghpour S, Mahmudi R 
(2023) Grain size dependent mechanical behavior and 
TRIP effect in a metastable austenitic stainless steel. Int J 
Plast 160:103502

[	51]	 Hecker SS, Stout MG, Staudhammer KP, Smith JL (1982) 
Effects of strain state and strain rate on deformation-
induced transformation in 304 stainless steel: Part I. Mag-
netic measurements and mechanical behavior. Metall Trans 
A 13:619–626

[	52]	 Murr LE, Staudhammer KP, Hecker SS (1982) Effects of 
strain state and strain rate on deformation-induced transfor-
mation in 304 stainless steel: Part II. Microstructural study. 
Metall Trans A 13:627–635

[	53]	 Staudhammer KP, Murr LE, Hecker SS (1983) Nuclea-
tion and evolution of strain-induced martensitic (b.c.c.) 
embryos and substructure in stainless steel: a transmission 
electron microscope study. Acta Metall 31:267–274

[	54]	 Talonen J, Hänninen H, Nenonen P, Pape G (2005) Effect 
of strain rate on the strain-induced γ → α′-martensite trans-
formation and mechanical properties of austenitic stainless 
steels. Metall Mater Trans A 36:421–432

[	55]	 Lo KH, Shek CH, Lai JKL (2009) Recent developments in 
stainless steels. Mater Sci Eng R-Rep 65:39–104

[	56]	 Soleimani M, Kalhor A, Mirzadeh H (2020) Transforma-
tion-induced plasticity (TRIP) in advanced steels: a review. 
Mater Sci Eng A 795:140023

[	57]	 Galindo-Nava EI, Rivera-Díaz-del-Castillo PEJ (2017) 
Understanding martensite and twin formation in austenitic 
steels: a model describing TRIP and TWIP effects. Acta 
Mater 128:120–134

[	58]	 Naraghi R (2009) Martensitic transformation in austenitic 
stainless steels. Department of Materials Science and Engi-
neering, Royal Institute of Technology, Stockholm

Publisher’s Note Springer Nature remains neutral with 
regard to jurisdictional claims in published maps and 
institutional affiliations.

3100


	Uncovering the generic and alloy-specific governing parameters of deformation-induced martensitic transformation in austenitic steel
	Abstract
	Graphical abstract 

	Introduction
	Model development
	Database
	ML modeling

	Results and discussion
	Prediction results
	Importance of features for DIMT
	Effect of strain and stress
	Effect of chemical elements
	Effect of prior austenite grain size
	Effect of strain rate and temperature

	Feature importance for specific steel grades
	Comparison with previous DIMT model

	Conclusions
	Acknowledgements 
	References




