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ABSTRACT
The friction-assisted lateral extrusion process (FALEP) is gaining attention as a 
candidate for fabricating high-performance ultrafine grain alloys for potential 
industrial applications. It consists of extruding metal in bulk or powder form into 
a solid sheet in a single operation to obtain ultrafine-grained (UFG) structures. 
The sheet has high yield strength due to its UFG microstructure and a shear-type 
crystallographic texture that is fundamentally different from the textures of sheets 
obtained by rolling. Apart from its single-step feature, FALEP requires lower 
forces than in rolling, so less energy is required to achieve large reductions. The 
present work introduces analytical elastic/plastic continuum calculations for the 
mechanics of the FALEP process. The results of the calculations demonstrate the 
great advantages of FALEP with respect to rolling and equal/non-equal channel 
angular pressings.
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GRAPHICAL ABSTRACT

Introduction

The topic of severe plastic deformation (SPD) pro-
cesses is attracting many researchers because of the 
exceptional enhancement of the properties of metals 
and alloys that can be achieved by simply applying 
very large plastic strains. The most significant change 
in properties is the strength, which may be increased 
tenfold by FALEP. Such high strength results from 
the extreme level of grain fragmentation inherent to 
ultrafine-grained (UFG) or even nano-structured met-
als induced by large strains. The emergence of modern 
research on SPD can be traced to 1946, when Bridgman 
received the Nobel prize for his high-pressure experi-
ments, among which the high-pressure torsion (HPT) 
method of SPD was introduced by applying extremely 
large strains on metals under high pressure [1]. The 
topic of SPD research gained new interest when Segal 
proposed the equal channel angular pressing (ECAP) 
process [2]. Since then, SPD research has been a stimu-
lating topic of materials science; see a recent review 
of the history of the development of SPD research in 
Ref. [3].

The different effects of SPD on the metallurgical 
state of alloys have been examined in detail. However, 
the continuum solid mechanics descriptions of SPD 

are less developed. The present work examines the 
mechanics of three ECAP-like angular extrusion pro-
cesses: the ECAP, NECAP (non-equal channel angular 
extrusion), and the FALEP processes (friction-assisted 
lateral extrusion process), with particular attention to 
FALEP. Only the case of perpendicular entrance and 
exit channels is examined. Schematics of these pro-
cesses are presented in Fig. 1, and their main charac-
teristics are discussed below.

ECAP In ECAP, the entry and exit channels have 
equal cross sections. A single pressing force is applied 
along the axis of the entry channel in the simplest con-
figuration [4], while a second resisting force along the 
extrusion axis of the exit channel is sometimes applied 
to provide back-pressure in more advanced ECAP 
equipment [5, 6]. The back-pressure adds a compres-
sive stress component across the plane of maximum 
shear at the channel intersection and throughout the 
material as it moves through the exit channel. The 
sample fills the entry channel completely ahead of the 
punch, increasing the hydrostatic pressure, especially 
when back-pressure is applied, making it easier to 
deform difficult-to-work materials. The friction forces 
between the sample and the channel hinder the pro-
cess and lead to gradients in the strain fields [7]. Fric-
tion can be reduced by die-walls that are moving with 
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the sample [8–11]. It is possible to deform bar sam-
ples without length limitation in the ECAP-Conform 
process [12, 13]. The possibility of upscaling ECAP 
without significant change in the properties has been 
shown by Mathaudhu et al. [14] and Frint et al. [8].

NECAP In non-equal channel angular pressing, 
the entry and exit channels have different cross sec-
tions, with the exit channel being smaller. The strain 
imposed in a single pass is larger compared to ECAP; 
however, higher pressures are required. One advan-
tage of NECAP compared to ECAP is that there is no 
need for back-pressure, because the hydrostatic stress 
is higher in the plastic deformation zone due to the 
reduced diameter of the outgoing channel. NECAP 
experiments were presented in 2009 by Tóth et al. [15], 
followed by an analysis of the strain state in Hasani 
et al. [16].

FALEP The friction-assisted lateral extrusion pro-
cess was proposed in 1992 [17, 18]. Since then, FALEP 
has been further applied in studies by Kobune and 
Itoh [19], Vu et al. [20] and by Pariyar et al. [21]. In 
the FALEP process two punches are used, one to 
apply compressive force in the entry channel–like 
in ECAP–while a second punch translates a sliding 
anvil, applying a shear force by friction at the bottom 
of the sample as it moves in the exit channel. There is 
no sliding between the side anvil and the sample, as 
illustrated in Fig. 1. The combination of compression 
and shear within the sample enables plastic flow, with 
each stress component being lower than the flow stress 
of the material.

Previous analytical approaches addressed ECAP 
and NECAP, and they are briefly reviewed here.

The simplest plastic deformation approach for 
ECAP was proposed by Segal [4] which considers that 
simple shear localises in a narrow band around the 
intersection plane of the two channels. This approach 
simpliflies calculations and was adopted in many 
studies (examples: Beyerlein et al. [22], Furukawa et al. 
[23], Estrin and Vinogradov [24]). However, because 
of the thin layer, the strain rate should be very large, 
which is physically questionable. Indeed, observations 
on scribed flow lines showed that the deformation can 
extend into a large region at the intersection area of the 
channels [5, 25–27].

Tóth et al. [28] introduced a flow line function for 
90° ECAP, from which the velocity gradient field could 
be obtained analytically. They applied the flow line 
approach for texture predictions, with good agreement 
with experiments. Such modeling was also applied for 
a 120° ECAP die [29], for NECAP [15, 16], and also for 
T-ECAP [30]. Hasani and Toth [25], as well as Wag-
ner et al. [31], proposed an extension of the original 
90° approach of Tóth et al. [28] for arbitrary ECAP die 
angles.

Beyerlein and Tomé [32] introduced a fan-type 
plastic deformation zone (PDZ) in ECAP, with cir-
cular flow lines within the PDZ, and determined 
the velocity gradient field and the shape changes of 
an initial spherical material element. The applica-
tion of this model showed a gradual rotation of the 

Figure 1   Schematic presentation of the ECAP, NECAP, and FALEP processes.
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crystallographic texture as a function of the angle of 
the fan with respect to the ideal shear model.

Paydar et  al. [33] examined 90° ECAP using an 
upper-bound analysis by minimizing the total energy 
that contained the plastic and the friction energies. 
They applied this only on a fan-shaped area for the 
plastic zone, assuming a circular velocity field. They 
concluded that the size of the fan depends on the fric-
tion only, for zero friction, the zone is only the ideal 
shear plane, while for significant friction, it can extend 
to the whole corner region of the die. The experi-
mental verification was done on commercially pure 
aluminum, using a very short sample, and without 
back-pressure.

Hasani and Tóth [34] also developed a fan-type 
PDZ approach for 90° ECAP by solving the flow line 
function. They found that the flow lines must be ellip-
tical within the PDZ, not circular. In their approach, 
the flow lines continued without discontinuity at the 
boundaries of the PDZ, contrary to the modeling of 
Beyerlein and Tomé [32] and Paydar et al. [33], where 
there is a discontinuity in the velocity gradient. There-
fore, it is possible that the flow lines are rounded, 
the shear zone is large, while the simple shear state 
is valid within the deformation zone (see Eq. (12) in 
Hasani and Tóth [34]. This particular result will be 
exploited in the present calculations as well.

There is only one analysis for FALEP, carried out by 
Nakamura et al. [17], which is an upper-bond calcula-
tion. In that work, it was assumed that there is no pres-
sure gradient in the inlet channel and that the shear 
stress applied by the shear-anvil is equal to the shear 
flow stress of the material. Apart from these two very 
simplistic assumptions, they analyzed the geometry 

defined by the relation: h
a

+ 0.5 ⋅
a

b

= 1 , where a and b 
are the diameters of the incoming and outgoing chan-
nels, respectively, and h is the sample height. Unfortu-
nately, this restriction implies that h becomes negative 
for a

b

> 2, so the analysis is invalid for larger a/b ratios.
In the present work, continuum mechanical descrip-

tions of the FALEP process are developed for the elas-
tic and plastic stress and strain states. The effect of 
friction on the necessary loading forces is also incorpo-
rated and compared for ECAP, NECAP, and FALEP. It 
is shown that FALEP has very significant advantages 
with respect to classical rolling and other SPD pro-
cesses, so it shall be the prefered candidate for new 
processes in modern sheet production.

Plasticity analysis for FALEP

In the following, we first analyze the strain and stress 
states in the plastic zone. An elastic analysis is also car-
ried out above the plastic zone to properly account for 
the effect of friction. Two reference systems are used: 
one fixed to the die (x, y, z) and another defined on the 
theoretical shear plane (xʹ, yʹ, zʹ), as defined in Fig. 2.

Plastic strain state

There is a remarkable similarity between the strain 
states that develop during ECAP, FALEP, and NECAP. 
For each, we adopt the hypothesis that simple shear 
takes place in a band along the plane of intersection 
between the two channels, as indicated in Fig. 2a. 
The thickness of the band is not a parameter in the 

Figure 2   a The definitions 
of the two reference sys-
tems used here for angular 
extrusion with perpendicular 
channels. The dashed area is 
the assumed plastic deforma-
tion zone. b Schema for the 
angles in the shear strain 
formula.
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equations that follow. This approximation of the defor-
mation zone is borrowed from the flow-line model 
of Hasani and Tóth [34] described above for ECAP, 
where a homogeneous simple shear was described 
analytically by elliptical flow lines. It is assumed that 
similar plastic deformation mode can take place also 
in NECAP and FALEP.

Angular extrusion is a large strain process, so we 
first define the plastic deformation gradient tensor F′ , 
which describes the deformation of an incompressible, 
infinitesimally small material element as simple shear 
by �  , in the xʹ-yʹ-zʹ reference system (note that � is 
negative):

Then F′ is expressed in the x-y-z testing reference 
system with the help of the rotation matrix R,

using the transformation operation F = R ⋅ F
�
⋅ R

t:

The use of F is to get the deformed length dq of a 
small material vector from its dQ undeformed state by 
the transformation: dq = F ⋅ dQ . The deformation gra-
dient tensor is very useful for calculating changes in 
the shape of a material element after it passes through 
the die (see later below). The shear strain value can be 
readily expressed in terms of the incoming and outgo-
ing angles of a material flow line that crosses the shear 
plane [35] (see Fig. 2b):

For 90° dies, this formula reduces to [16]:

The plastic deformation gradient Eq.  (3) can be 
rewritten using only the geometrical parameters of 
the two channels:

(1)F
� =

⎛⎜⎜⎝

1 � 0

0 1 0

0 0 1

⎞⎟⎟⎠
.

(2)R

x
�
→x

=

⎛⎜⎜⎝

cos� −sin� 0

sin� cos� 0

0 0 1

⎞⎟⎟⎠

(3)F =

⎛⎜⎜⎝

1 − �sin� cos� �cos2� 0

−�sin2� 1 + �sin� cos� 0

0 0 1

⎞⎟⎟⎠
.

(4)|�| = ctg� + ctg�.

(5)|�| = a

b

+
b

a

.

The inverse of F is:

Once F and F−1 are known, the Eulerian finite defor-
mation tensor can be readily constructed by its 
definition:

For the special cases when a∕b = 1 (ECAP):

and when a∕b ≫ 1(extreme FALEP)with 𝛾 ≅ −
a

b

:

Note that for extreme FALEP, when a∕b ≫ 1 , the 
deformation mode slightly differs from simple shear. 
For simple shear, the Eulerian strain tensor is:

Shape change due to plastic strain in FALEP/
ECAP/NECAP

An important aspect of a large strain experiment is 
the shape change produced by the deformation. Fre-
quently, the initial grain shape is elongated already in 
the x or y direction, so in the following, we consider 
this general case. The equation of such an initial ellipse 
in the X–Y plane of testing is the following:

(6)F =

⎛⎜⎜⎝

2 −a∕b 0

b∕a 0 0

0 0 1

⎞⎟⎟⎠
.

(7)F
−1 =

⎛⎜⎜⎝

0 a∕b 0

−b∕a 2 0

0 0 1

⎞⎟⎟⎠
.

(8)

E

E

=
1

2

�
I − F

−1t
F
−1
�
=

1

2

⎛⎜⎜⎝

1 − (b∕a)2 2b∕a 0

2b∕a −(a∕b)2 − 3 0

0 0 0

⎞⎟⎟⎠
.

(9a)E

E

=

⎛⎜⎜⎝

0 1 0

1 − 2 0

0 0 0

⎞⎟⎟⎠
,

(9b,c)E

E

≅
1

2

⎛⎜⎜⎝

1 0 0

0 −(a∕b)2 0

0 0 0

⎞⎟⎟⎠
(a∕b ≫ 1).

E

E

�
simple shear

�
=

1

2

⎛⎜⎜⎝

0 � 0

� −�2 0

0 0 0

⎞⎟⎟⎠
.

(10)
(

X

A
0

)
2

+

(
Y

B
0

)
2

= 1,
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where A
0
 and B

0
 are the long and short half-axes of 

the ellipsoid. During shearing within an angular die, 
this initial ellipsoid is transformed into another shape. 
The equation of the new ellipse can be calculated using 
the deformation gradient tensor. F transfers an initial 
vector dQ(X,Y,Z) into its deformed state dq(x,y,z). For 
a vector (X,Y,Z) in the reference configuration, the 
deformed vector coordinates (x,y,z) after extrusion 
can be determined by:

Using Eq. (10), this is rewritten as:

This relation provides two equations:

By eliminating X, we get the equation of the 
deformed ellipse:

The function y(x) can be expressed from this 
equation:

The values of the new large half axes and the orien-
tation � of the deformed ellipse are derived in Appen-
dix 1:

(11)
⎛⎜⎜⎝

x

y

z

⎞⎟⎟⎠
=

⎛⎜⎜⎝

2 −a∕b 0

b∕a 0 0

0 0 1

⎞⎟⎟⎠

⎛⎜⎜⎝

X

Y

Z

⎞⎟⎟⎠
.

(12)
⎛⎜⎜⎝

x

y

z

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

2 −a∕b 0

b∕a 0 0

0 0 1

⎞
⎟⎟⎠

⎛⎜⎜⎜⎝

X

B
0

�
1 −

�
X

A
0

�
2

0

⎞⎟⎟⎟⎠
.

(13a,b)x = 2X −
a

b

B
0

√
1 −

(
X

A
0

)
2

, y =
b

a

X.

(14)x = 2gy − gB
0

√
1 −

(
g

y

A
0

)
2

,where g =
a

b

.

(15)y(x) =
±2A2

0
x + gB

0
A
0
⋅

√
B
2

0
g
2 + 4A

2

0
− x

2

(
B
2

0
g
2 + 4A

2

0

)
g

.

(16a,b)
A =

A
0
B
0√
2

����
H +

�
H

2 −
4

A
2

0

B
2

0

, B =
A
0
⋅ B

0

A

,

where H =
b

a
2
B
2

0

+
4

B
2

0

+
a
2

b
2
A
2

0

.

Strain rate state in FALEP

The strain rate state for NECAP was examined by 
Hasani et al. [16]. Here, we recall the velocity gradient 
( L ) and the Eulerian strain rate tensor ( �̇ ), expressed in 
the reference system (x, y, z) of Fig. 2a:

Here 𝛾̇ is the shear strain rate on the intersection plane 
(note that it is negative), which is oriented at an angle 
β with respect to the horizontal channel. The compo-
nents of these tensors can be rewritten using the channel 
dimensions a and b:

The ratio of the two primary strain rate components 
is:

There is a particularity in Eq. (20b) above for the case 
of ECAP, where the shear components are zero. The 
reason is that the strain rate state is expressed in the x–y 
reference system where the simple shear state is repre-
sented by equal compression and tension Eq. (20a). At 
the same time, the same shear components of the veloc-
ity gradient are nonzero; they are equal and opposite, 
describing a pure rigid body rotation. These particu-
larities of the ECAP deformation mode were examined 
already in Tóth et al. [28].

(17)� = −
1

2

arc sin

(
4bA

2

0

a

(
B
2 − A

2

)
)
.

(18a,b)

L = 𝛾̇

⎛⎜⎜⎝

sin 𝛽 ⋅ cos 𝛽 − cos
2 𝛽 0

sin
2 𝛽 − sin 𝛽 ⋅ cos 𝛽 0

0 0 0

⎞⎟⎟⎠
,

�̇ =
𝛾̇

2

⎛⎜⎜⎝

sin 2𝛽 − cos 2𝛽 0

− cos 2𝛽 − sin 2𝛽 0

0 0 0

⎞⎟⎟⎠
.

(19a,b)L =
𝛾̇

a
2 + b

2

⎛⎜⎜⎝

a ⋅ b −b2 0

a
2 −a ⋅ b 0

0 0 0

⎞⎟⎟⎠
, �̇ =

⎛⎜⎜⎝

𝜀̇
xx

𝜀̇
xy

0

𝜀̇
yx

𝜀̇
yy

0

0 0 0

⎞⎟⎟⎠
,

(20a,b)
where 𝜀̇

xx
= −𝜀̇

yy
= −𝛾̇

a ⋅ b

a
2 + b

2

,

𝜀̇
xy

= 𝜀̇
yx

= 𝛾̇
a
2 − b

2

2

(
a
2 + b

2

) .

(21)
𝜀̇
xy

𝜀̇
yy

=
1

2

(
a

b

−
b

a

)
.
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The stress state in FALEP

Here, we examine the Cauchy stress tensor for the case 
of FALEP, which is energy conjugate to the Eulerian 
finite strain tensor Eq. (8) [36]. For NECAP, the calcula-
tion process is similar and is detailed in Appendix 2.

As the die is open for the outgoing material flow, the 
�
xx

 normal stress component can be taken zero in the 
plastic zone, so the stress tensor has the form:

The deviatoric stress state is:

Relation between stress and strain

We assume von Mises (isotropic) material behavior, for 
which the yield function is:

where �
0
 is the flow stress in simple shear. Using the 

associated flow rule for the strain rate component 𝜀̇
zz

 , 
a relation is obtained between �

yy
 and �

zz
:

Therefore, the deviatoric and hydrostatic stress states 
are:

Substituting the deviatoric stress components Eq. (24) 
into the yield function Eq. (25), we obtain:

(22)� =

⎛⎜⎜⎝

0 � 0

� �
yy

0

0 0 �
zz

⎞⎟⎟⎠
.

(23)S = � − �
h

, where �
h

= I ⋅

�
ii

3

= I ⋅

�
yy

+ �
zz

3

.

(24)S =
1

3

⋅

⎛⎜⎜⎝

−�
yy

− �
zz

3� 0

3� −�
zz

+ 2�
yy

0

0 0 −�
yy

+ 2�
zz

⎞⎟⎟⎠
.

(25)
f

(
S

)
=

1

2

S
ij
⋅ S

ij
− �2

0
= 0, → f

(
S

)

=
1

2

(
S
2

xx
+ S

2

yy
+ S

2

zz
+ S

2

xy
+ S

2

yx

)
− �2

0
= 0,

(26)𝜀̇zz = 𝜆̇
𝜕f

𝜕Szz
= 𝜆̇

−𝜎yy + 2𝜎zz

9

= 0 → 𝜎zz =
𝜎yy

2

.

(27)S =

⎛⎜⎜⎜⎝

−
1

2

�
yy

� 0

�
1

2

�
yy

0

0 0 0

⎞⎟⎟⎟⎠
, �

h

=

⎛⎜⎜⎜⎝

�
yy

2

0 0

0

�
yy

2

0

0 0

�
yy

2

⎞⎟⎟⎟⎠
.

A further relation can be found between the �
yy

 and 
� stress quantities by using the associated flow rule for 
the 𝜀̇

yy
 and 𝜀̇

xy
 strain rate components:

The ratio of these two strain rates is:

Now using Eq. (21), we obtain:

Using Eqs. (28), (31), both Cauchy stress components 
can be expressed by the geometrical parameters a and b, 
and the simple shear yield stress, �

0
:

It is interesting to notice that Eq. (32b) shows zero 
shear stress for the case of ECAP (when a = b). The rea-
son of this result is that the corresponding shear strain 
component is zero in ECAP, so isotropic plasticity leads 
to zero shear stress. At the same time, some ECAP tool-
ing possesses a bottom part that slides to reduce the 
effect of friction on the sample (for example; [8]), that 
is, the shear stress is zero. Increasing the shear stress 
artificially is not possible because the bottom punch 
must be in displacement control to account for volume 
constancy of the specimen, so the shear stress accom-
modates to the required value. In ECAP, the required 
value is actually zero. In FALEP, it is not: the shear stress 
can be calculated from the force applied on the punch 
and theoretically should be the value given by Eq. (32b).

Elastic analysis

In the upper part of the sample, the deformation is 
only elastic, so an elastic analysis is appropriate. The 
Cauchy stress and infinitesimal strain tensors for the 
case of a rigid die are:

(28)�2
yy

+ 4�2= 4�2
0
.

(29)𝜀̇
yy

= 𝜆̇
𝜕f

𝜕S
yy

= 𝜆̇
𝜎
yy

2

, 𝜀̇
xy

=
𝛾̇

2

= 𝜆̇
𝜕f

𝜕S
xy

= 𝜆̇ ⋅ 𝜏.

(30)
𝜀̇
xy

𝜀̇
yy

=
2 ⋅ 𝜏

𝜎
yy

.

(31)
�

�
yy

=
1

4

(
a

b

−
b

a

)
.

(32a,b)

�
yy

=
2√

1 +
1

4

⋅

(
a

b

−
b

a

)
2

⋅ �
0
, � =

�
0√

1 +
4(

a

b
−

b

a

)
2

.
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For elastic behavior, the stress and strain tensors are 
related by the elastic formula:

where C
ijkl

 is the elasticity tensor. Assuming isotropic 
elasticity, one can obtain from Eq. (34):

Here G is the shear modulus and K is the compress-
ibility modulus. The latter can be expressed as a func-
tion of the Poisson number ν, and the Young modulus 
E:

The two equations in (35) provide a relation 
between �

zz
 and �

yy
:

This relation shows that 𝜎
zz

< 𝜎
yy

 . For example, the 
ratio of �zz

�
yy

 for aluminum is 0.516, not far from the per-

fectly plastic case, where it is 0.5 Eq. (26).

The effect of friction on the extrusion force

Equation (32a) shows the stress level of the compression 
needed for the plastic deformation in the plastic zone. 
However, the external compressive force for pushing 
the sample through the die is somewhat larger because 
of the friction of the sample with the die walls. Friction is 
expected at the lateral surfaces of the vertical part of the 
die (Fig. 2a), on four surfaces: two on the walls with nor-
mal vectors parallel to the x axis, and two walls that are 
oriented with their normal vectors parallel to the z axis.

The friction force operates on the sample in the direc-
tion of the y axis. It causes a progressive increase in the 
value of the necessary force to extrude the material. 
The stress state can be considered hydrostatic-elastic 
in the sample above the plastic zone because that part 

(33)� =

⎛⎜⎜⎝

�
1
0 0

0 �
2
0

0 0 �
3

⎞⎟⎟⎠
, � =

⎛⎜⎜⎝

0 0 0

0 �
2
0

0 0 0

⎞⎟⎟⎠
.

(34)�
ij
= C

ijkl
⋅ �

kl
,

(35)
�
xx

= �
zz

=
(
K −

2

3

G

)
⋅ �

yy
, �

yy
=
(
K +

4

3

G

)
⋅ �

yy
.

(36)K =
E

3(1 − 2v)
.

(37)�
zz

=
K −

2

3

G

K +
4

3

G

⋅ �
yy
.

of the sample is completely constrained by four walls, 
by the compression punch, and by the sample itself. In 
the plastic part, however, there are only two walls that 
produce friction forces on the sample because there is no 
stress along the x axis. Within this part, the stress tensor 
is considered to be constant. The corresponding friction 
force, Ta

fr.
 , applied on the sample in the plastic zone, is:

� is the friction coefficient between the sample and 
the lateral surfaces of the die. Note that Ta

fr.
 is positive 

because �
yy

 is negative. The equilibrium condition of the 
forces in the y direction on a horizontal material slice of 
thickness dy, in the upper part of the sample, leads to 
the following equation:

Using Eq. (37):

In differential form, Eq. (40) reads:

The integration of this equation leads to:

Using Eq. (32a), we obtain the stress variation as a 
function of h:

One can then obtain the compression force neces-
sary for the extrusion:

where the friction force acting on the bottom plastic 
zone is added from Eq. (38).

(38)T
a

fr.
= −2� ⋅ a ⋅ b ⋅ �

zz
(b) → T

a

fr.
= −� ⋅ a ⋅ b ⋅ �

yy
(b).
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yy

(
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yy

(
y
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⋅ a ⋅ dy − 2� ⋅ �
zz

(
y

)
⋅ a ⋅ dy = 0.
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�
yy

(
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)
⋅ a

2 − �
yy

(
y
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2 − �
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(
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3

G

K +
4

3
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(
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)
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(42)
�
yy
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(b) ⋅ e

4�

a
⋅

K+
1

3
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3
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(44)T
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(h) ⋅ a2 + �
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The force on the shear-punch can also be calcu-
lated from the shear stress by adding the friction force 
between the punch and the die:

Here � is from Eq. (32b), and �∗ is the friction coef-
ficient between the punch and the die at the bottom of 
the shear-punch (not with the sample).

During extrusion, a steady-state condition devel-
ops after an initial transition stage, during which the 
extruded material increases its yield stress by strain 
hardening as the material passes through the plastic 
zone. Therefore, for the �

0
 value one must take the 

shear yield stress belonging to the final hardened state 
after extrusion.

Discussion

The calculations presented above were developed for 
obtaining analytical formulas for the stress and strain 
rate states, the effect of friction, and the shape changes 
of an initial elliptic grain in the ECAP/NECAP/FALEP 
processes. Here, we first examine the main character-
istics of the results with the help of suitable figures.

Important elements in metal forming are the 
amount of strain and the shape change that a mate-
rial element is experiencing during its passage in the 
die. Figure 3 shows the shear strain, the large and 
small half axes of the ellipse, the aspect ratio, and 
the orientation of the axis of the ellipse with respect 
to the outgoing exit channel direction (the x axis) for 
an initially spherical grain with 60 µm diameter, as a 
function of the a/b ratio. The shear strain is limited to 
the value of 2 in ECAP for a 90° die. In NECAP, large 
a/b ratios cannot be reached; experiments for a/b = 2 
are reported in Tóth et al. [15], Hasani et al. [16], 
Asgari et al. [37], Fereshteh-Saniee et al. [38], Hasani 
et al. [39]. However, FALEP can result in extremely 
large strains compared to ECAP or NECAP. As can 
be seen in Fig. 3, the shear strain is higher than 20 in 
one step, which is equal to 10 passes (!) in ECAP. To 
demonstrate that this is not only theoretical, Fig. 4 
shows a half-extruded aluminium AA1050 sample 
produced at room temperature by FALEP in the 
LEM3 laboratory (Metz, France).

One can see from Fig. 3 the changes in the ini-
tially spherical grains. The change in grain shape is 
tremendous in FALEP: the initial 60 µm diameter 

(45)T
shear

= � ⋅ a2 + �∗
⋅ a

2
⋅ �

2
(c).

grain is elongated into an ellipse of 1200 µm × 3 µm 
for a/b = 20. Such a grain shape change promotes 
the grain fragmentation process. Indeed, the final 
fragmented grain size was about 0.6 µm and equi-
axed in the Al sample shown in Fig. 4. This size is 
about the same order as the average thickness of 
the ellipse, which varies from 0 to 3 µm along the 
elongated ellipse. It is also demonstrated in Fig. 3 
that the deformed ellipse aligns with the direction 
of the outgoing channel very close; at an a/b = 5, the 
ellipse large axis is within 1° oriented with the chan-
nel. Note that at this value of the die geometry, the 
orientation of the shear plane is actually larger; it is 
11.3°.

It is also very important to compare the extrusion 
forces necessary to carry out FALEP vs NECAP. 
Equations  (44) and (45) were developed to cal-
culate the pressing and shear forces in FALEP. 
These relations were applied for the AA1050 
alloy in Fig.  5a for the following selected case: 
�
0
= 100 MPa, a = 20 mm, b = 2 mm,E = 70 GPa,G = 25 GPa, � = 0.33   . 

The sample length was left as a variable: 
h = 2 mm − 50 mm , for different friction coefficient 
values. As can be seen, the normal extrusion force 
gradually decreases as the sample slides through the 
die. This effect is due to the reduced surface area of 
the sample that has frictional contact with the die. 
Our experiments confirmed this effect. It is also natu-
ral that the extrusion force rapidly increases when 
friction is higher. It is interesting that the shear force 
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Figure  3   Shear strain, dimensions, and orientation of an ini-
tially spherical grain as a function of the geometry of the ECAP/
FALEP/NECAP process. The initial diameter of the grain is 60 
µm.
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remains nearly independent of both the friction and 
the die geometry (represented by a/b in Fig. 5a). The 
situation is completely different for NECAP, pre-
sented in Fig. 5b, for the same material parameters 

as for FALEP. In NECAP there is only a single com-
pression force for which the formula is developed 
in Appendix 2, in Eq. (63). As can be seen in Fig. 5b, 
the extrusion forces are very high in NECAP with 
respect to FALEP; about five times higher! Therefore, 
by adding a relatively small shear force, there is a 
tremendous gain in FALEP in the normal extrusion 
force. This can be understood by analyzing the rela-
tion between the compression and shear stresses in 
the plastic zone; we obtain from Eq. (31) for a/b >  > 1:

This relation shows that the compression stress 
depends strongly on the geometry, the b/a ratio. For 
example, for b/a = 1/10, the compression stress is 2.5 
times smaller than the shear force, so it is mostly the 
shear stress that controls the deformation process. 
Indeed, we obtain for this case from the flow crite-
rion of Eq. (28): � = 0.98 ⋅ �

0
 . Nevertheless, �

yy
 cannot 

be too small because it is the compression force that 
produces the necessary friction force for achieving 
the non-sliding condition between the shear anvil 
and the sample. Indeed, using the Coulomb friction 
law, the non-sliding condition requires that � ≥ �  . 
Therefore, according to Eq. (28), the minimum com-
pression stress in the deformation zone is: 
�
yy
(min.) =

√
4

5

�
0
= 0.894 ⋅ �

0
 . The normal extrusion 

stress on the punch is, of course, larger than that 
because of the friction of the sample with the die, 
expressed by Eq. (43).

Another way to show the efficiency of the FALEP 
process is to examine the extrusion forces as a func-
tion of the geometry of the die, the a/b ratio. This is 
displayed in Fig. 6, for different friction coefficient 
values. As can be seen, the extrusion force decreases 
very much by increasing the a/b ratio (Fig. 6a), while it 

�
yy

≅ 4
b

a

�.

Figure 4   Example of a FALEP half-extruded AA1050 sample, deformed to a shear of 20 in one step.
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Figure 5   The compression and shear extrusion forces as a func-
tion of the sample length in the vertical channel for a FALEP and 
b NECAP of AA1050, including the effect of friction, for a chan-
nel section of 20 mm × 20 mm, and a/b = 10 (outgoing channel’s 
diameter is 2 mm).
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increases constantly without the assistance of the shear 
force, which is the case for NECAP (Fig. 6b).

The efficiency of the FALEP process can also be seen 
by the much higher plastic strain achieved in the work-
piece compared to conventional forming processes, yet 
producing the same final shape. To demonstrate this, 
we compare FALEP to rolling. Starting with an initial 
thickness h

0
 of the workpiece and arriving at a thick-

ness h of the rolled sheet, the equivalent strain in roll-
ing is: e =

�
2∕

√
3

�
⋅ ln

�
h
0
∕h

�
 , while in FALEP it is: 

e =
(h0∕h+h∕h0)√

3

 . Figure 7 shows the comparison of these 

two strains as a function of the ratio of the initial thick-
ness to the final one ( h

0
∕h ). It can be seen, especially for 

high h
0
∕h ratios, that FALEP imposes a much higher 

strain in the material. To reach the UFG/nano steady 
state of a metal in SPD, a minimum equivalent strain 
of about 6 is required, which can be readily achieved 
in FALEP in a single step at h

0
∕h = 10 , while in rolling 

it cannot be reached, even for a thickness reduction of 
30, as seen in Fig. 7. To achieve such a large strain by 
rolling, a reduction of h

0
∕h = 181 would be required, 

which is difficult to reach, and requires multiple passes 
with inter-pass heat treatments.

Finally, we compare the presented extrusion force 
predictions with some experimental results. We have 
conducted FALEP experiments at room temperature 
on commercially pure aluminum, OFHC copper, and 
a Nb-53%Ti alloy. The testing parameters, elasticity 
constants, and measured and predicted extrusion 
forces are presented in Table 1. As can be seen, the 
predicted extrusion forces agree well with the normal 
forces, while the shear forces are predicted to be about 
20% lower level for the OFHC copper and the Nb-53Ti 
alloy. Note that the friction coefficients were not meas-
ured; they are estimated values. The lower predicted 
shear force is probably due to the extra friction taking 
place in the outgoing channel, which was made larger 
only beyond 5 mm distance from the exit point. Never-
theless, the overall agreements between measured and 
predicted extrusion forces are good, verifying that the 
equations developed here can be used to estimate the 
extrusion forces in the FALEP process.

Finally, concerning the assumed simple shear 
deformation mode in the present analysis, it is pos-
sible to verify it experimentally in an indirect man-
ner: by measuring the crystallographic texture of the 
extruded sample. In all our texture measurement so 
far, we observed simple shear textures that were ori-
ented parallel to the assumed shear plane (see, for 
example, in Abhishek Pariyar et al. [21] and Vu et al. 
[20]), demonstrating that the simple shear approxima-
tion is a reasonable one in the theoretical modeling.
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Figure 6   The compression and shear extrusion forces as a func-
tion of the sample length in the vertical channel for a FALEP and 
b NECAP of AA1050, including the effect of friction, for a chan-
nel section of 20 mm × 20 mm, and for variable a/b ratio (sample 
length is h = 50 mm).

Figure  7   The equivalent strain in FALEP versus rolling as a 
function of the thickness reduction ratio.
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Conclusions

FALEP is an SPD process that can be the preferred can-
didate for introduction in industry for forming strip 
and sheet. In order to help engineers in planning such 
installations, the basic mechanics of FALEP must be 
established, as has been done in the present work. The 
main conclusions of the analysis can be summarized 
as follows:

1.	 The mechanics of FALEP has been developed and 
expressed in terms of simple geometric parameters 
and the flow stress of the material.

2.	 Analyses of the shape and orientation of ellipti-
cal grain shapes resulting from FALEP have been 
developed.

3.	 Friction is a major factor that affects the extrusion 
forces; its role is expressed in analytical formulas 
for FALEP/NECAP/ECAP.

4.	 FALEP has been compared to ECAP and NECAP. 
It has been shown that FALEP requires about five 
times smaller extrusion force by adding only a 
small shear component.

5.	 The extrusion force in FALEP can be decreased by 
reducing the exit channel dimension (the a/b ratio).

6.	 The amount of equivalent deformation in a single 
step in FALEP is far greater than can be achieved 
by rolling, where multiple passes are required to 
obtain the same final sheet dimensions.
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Appendix 1

Calculation of the axes and orientation of an initial 
ellipse after deformation in FALEP/ECAP/NECAP.

The canonic equation of a non-rotated ellipse is 
given by Eq. (10). It is a – � angle rotated version of 
the ellipse of Eq. (14). The change of coordinates can be 
obtained by the pure rotation matrix that corresponds 
to a rotation angle �:

From this, we obtain the following coordinate 
transformation:

With these relations, Eq. (10) can be rewritten as:

Or, using the C, D, E notations for the terms in the 
parentheses:

One can also make use of the relation that expresses 
the surface area invariance of the ellipse during its plas-
tic deformation:

From Eqs. (48), (49), (50), one obtains the following 
useful relation:

Now we express Eq.  (14) in the same format as 
Eq. (48):

From this equation, we obtain another formula for the 
(C +D) term, named H:

The A axis of the ellipse can be obtained from the two 
expressions of (C +D) , while B follows from (50):

(46)
⎛⎜⎜⎝

X

Y

Z

⎞⎟⎟⎠
=

⎛⎜⎜⎝

cos� −sin� 0

sin� cos� 0

0 0 1
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⎛⎜⎜⎝

x

y

z

⎞⎟⎟⎠

(47a,b)
X = x ⋅ cos� − y ⋅ sin�,Y = x ⋅ sin� + y ⋅ cos�
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Finally, the orientation � of the ellipse, measured 
from the x axis, is obtained by identifying the terms after 
xy in Eqs. (48) and (52):

The aspect ratio of the ellipse can be obtained from 
(54a) and (50):

Appendix 2

The mechanics of NECAP

Figure  1b shows schematically the geometry of 
NECAP. During extrusion, the material is flowing 
into the horizontal channel. It is assumed that the 
plastic deformation takes place by simple shear in 
a band that connects the two corners of the die, as 
shown in Fig. 1. In the following, we first analyze the 
strain and stress states in the plastic zone. The elastic 
deformation is neglected in the analysis, and only the 
plastic part is considered because of the very large 
plastic strains. The reference system is defined in 
Fig. 2.

Strain state

The strain analysis has already been done in 
Sect.  “Strain rate state in FALEP” for FALEP by 
assuming the strain mode in NECAP, so the same 
results are valid for NECAP.

Stress state

The difference with FALEP is that there is no tangent 
shear force applied to help the material flow. Instead, 
there is a friction force at the bottom of the vertical 
channel, acting in the opposite direction of the flow. 
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)
.
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2

0
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2

0

)
.

The effect of the friction force is local and restricted 
to a narrow material zone at the bottom, so its effect 
on the plastic flow in the bulk of the plastic zone can 
be neglected. So, it can be assumed that in the plastic 
zone of NECAP, the stress tensor has the form:

The deviatoric stress state is:

Following the same kind of calculation as in 
Sect. “Relation between stress and strain” above, we 
obtain from the associated flow rule the same rela-
tion between �

yy
 and �

zz
 as for FALEP:

Therefore, the deviatoric stress state is:

Substituting the deviatoric stress in the yield func-
tion Eq. (25), we obtain:

The effect of the friction in the sample above the 
plastic zone 

(
y ≥ b

)
 is the same as in the calculation 

for FALEP, so the variation of the axial stress state is 
similar to Eq. (42):

To obtain the total extrusion force, the friction of the 
sample with the two walls around the plastic zone has 
to be added, we obtain:
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