Skip to main content

Advertisement

Log in

An anti-corrosion MAO coating containing germanium dioxide and tantalum pentoxide on titanium surface for facilitating osteoblastic differentiation and killing bacteria

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Looseness and infection are the two main reasons for failure of titanium (Ti) based implants (TBI), and offering TBI with superb osteogenesis and bactericidal effects is especially promising for orthopedic applications. Herein, a micro-arc oxidation (MAO) coating including germanium oxide (GeO2), tantalum oxide (Ta2O5) and titanium dioxide (TiO2) on Ti (MTG) surface was created through simultaneous dispersing Ge and Ta particles in the basic electrolyte. In comparison with Ti, the simultaneous deposition of Ge and Ta particles onto the MAO coating led to the change of surface characters (e.g., topography, hydrophilicity, roughness, and protein absorption) of MTG. Moreover, MTG exhibited exceptional corrosion resistance because of presence of Ta2O5. In addition, MTG significantly facilitated the cell response (e.g., attachment, multiplication, and osteoblastic differentiation) due to the existence of Ta2O5. Further, MTG revealed excellent bactericidal capability, which was ascribed to the sustained-release of Ge ions from the MAO coating. Accordingly, simultaneous deposition of Ge and Ta particles onto the MAO coating resulted in a novel implantable biomaterial of MTG with illustrious osteogenic and antibacterial capability as well as corrosion resistance. In short, MTG with excellent cytocompatibility possessed great potential for dental and load-bearing bone replacements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Chen QZ, Thouas GA (2015) Metallic implant biomaterials. Mat Sci Eng R 87:1–57. https://doi.org/10.1016/j.mser.2014.10.001

    Article  Google Scholar 

  2. Kaur M, Singh K (2019) Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mat Sci Eng C Mater 102:844–862. https://doi.org/10.1016/j.msec.2019.04.064

    Article  CAS  Google Scholar 

  3. Yuan Z, He CC, Liu P, Cai KY (2021) Antibacterial surface design of biomedical titanium materials for orthopedic applications. J Mater Sci Technol 78:51–67. https://doi.org/10.1016/j.jmst.2020.10.066

    Article  CAS  Google Scholar 

  4. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  5. Liu XY, Chu PK, Ding CX (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mat Sci Eng R 47:49–121. https://doi.org/10.1016/j.mser.2004.11.001

    Article  CAS  Google Scholar 

  6. Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C (2019) Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater 83:37–54. https://doi.org/10.1016/j.actbio.2018.10.036

    Article  CAS  Google Scholar 

  7. Bauer S, Schmuki P, Von-Der-Mark K, Park J (2013) Engineering biocompatible implant surfaces Part I: materials and surfaces. Prog Mater Sci 58:261–326. https://doi.org/10.1016/j.pmatsci.2012.09.001

    Article  CAS  Google Scholar 

  8. Tang JC, Wu ZZ, Yao XY, Zhou YH, Xiong Y, Li YL, Xu JY, Dargusch MS, Yan M (2022) From bio-inertness to osseointegration and antibacterial activity: A one-step micro-arc oxidation approach for multifunctional Ti implants fabricated by additive manufacturing. Mater Des 221:110962. https://doi.org/10.1016/j.matdes.2022.110962

    Article  CAS  Google Scholar 

  9. Santos-Coquillat A, Tenorio RG, Mohedano M, Martinez-Campos E, Arrabal R, Matykina E (2018) Tailoring of antibacterial and osteogenic properties of Ti6Al4V by plasma electrolytic oxidation. Appl Surf Sci 454:157–172. https://doi.org/10.1016/j.apsusc.2018.04.267

    Article  CAS  Google Scholar 

  10. Wang H, Su KX, Su LZ, Liang PP, Ji P, Wang C (2019) Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mat Sci Eng C-Mater 104:109908. https://doi.org/10.1016/j.msec.2019.109908

    Article  CAS  Google Scholar 

  11. Gao HR, Yang JZ, Jin X, Qu XH, Zhang FQ, Zhang DC, Chen HS, Wei HL, Zhang SP, Jia WT, Yue B, Li XP (2021) Porous tantalum scaffolds: Fabrication, structure, properties, and orthopedic applications. Mater Des 210:110095. https://doi.org/10.1016/j.matdes.2021.110095

    Article  CAS  Google Scholar 

  12. Mei SQ, Yang LL, Pan YK, Wang DQ, Wang XH, Tang TT, Wei J (2019) Influences of tantalum pentoxide and surface coarsening on surface roughness, hydrophilicity, surface energy, protein adsorption and cell responses to PEEK based biocomposite. Colloid Surf B 174:207–215. https://doi.org/10.1016/j.colsurfb.2018.10.081

    Article  CAS  Google Scholar 

  13. Wei XW, Liu BY, Liu G, Yang F, Cao F, Dou XJ, Yu WT, Wang BJ, Zheng GS, Cheng LL, Ma ZJ, Zhang Y, Yang JH, Wang ZH, Li JL, Cui DP, Wang W, Xie H, Li L, Zhang F, Lineaweaver WC, Zhao DW (2019) Mesenchymal stem cell-loaded porous tantalum integrated with biomimetic 3D collagen-based scaffold to repair large osteochondral defects in goats. Stem Cell Res Ther 10:72. https://doi.org/10.1186/s13287-019-1176-2

    Article  CAS  Google Scholar 

  14. Hu XL, Mei SQ, Wang F, Qian J, Xie D, Zhao J, Yang LL, Wu ZY, Wei J (2021) Implantable PEKK/tantalum microparticles composite with improved surface performances for regulating cell behaviors, promoting bone formation and osseointegration. Bioact Mater 6:928–940. https://doi.org/10.1016/j.bioactmat.2020.09.021

    Article  CAS  Google Scholar 

  15. Liu BY, Ma ZJ, Li JL, Xie H, Wei XW, Wang BJ, Tian SM, Yang JH, Yang L, Cheng LL, Li L, Zhao DW (2021) Experimental study of a 3D printed permanent implantable porous Ta-coated bone plate for fracture fixation. Bioact Mater 10:269–280. https://doi.org/10.1016/j.bioactmat.2021.09.009

    Article  CAS  Google Scholar 

  16. Dinjaski N, Suri S, Valle J, Lehman SM, Lasa I, Prieto MA, García AJ (2014) Near-infrared fluorescence imaging as an alternative to bioluminescent bacteria to monitor biomaterial-associated infections. Acta Biomater 10:2935–2944. https://doi.org/10.1016/j.actbio.2014.03.005

    Article  CAS  Google Scholar 

  17. Mas-Moruno C, Su B, Dalby MJ (2019) Multifunctional coatings and nanotopographies: toward cell instructive and antibacterial implants. Adv Healthc Mater 8:1801103. https://doi.org/10.1002/adhm.201801103

    Article  CAS  Google Scholar 

  18. Li ZS, Liu H, Xu X, Ma LN, Shang SB, Song ZQ (2020) Surface modification of silicone elastomer with rosin acid-based quaternary ammonium salt for antimicrobial and biocompatible properties. Mater Des 189:108493. https://doi.org/10.1016/j.matdes.2020.108493

    Article  CAS  Google Scholar 

  19. Dobrzyński D, Boguszewska-Czubara A, Sugimori K (2018) Hydrogeochemical and biomedical insights into germanium potential of curative waters: a case study of health resorts in the Sudetes Mountains (Poland). Environ Geochem Hlth 40:1355–1375. https://doi.org/10.1007/s10653-017-0061-0

    Article  CAS  Google Scholar 

  20. Ge M, Zong M, Xu D, Chen Z, Yang J, Yao H, Wei C, Chen Y, Lin H, Shi J (2021) Freestanding germanene nanosheets for rapid degradation and photothermal conversion. Mater Today Nano 15:100119. https://doi.org/10.1016/j.mtnano.2021.100119

    Article  CAS  Google Scholar 

  21. Kurt MS, Arslan ME, Yazici A, Mudu I, Arslan E (2021) Tribological, biocompatibility, and antibiofilm properties of tungsten-germanium coating using magnetron sputtering. J Mater Sci-Mater M 32:6. https://doi.org/10.1007/s10856-020-06477-4

    Article  CAS  Google Scholar 

  22. Chen Z, Ke HZ, Wang J, Li YG, Jia H, Wei QF (2022) Novel germanium-polyamide6 fibers with negative air ions release and far-infrared radiation as well as antibacterial property. Text Res J 92:1739–1747. https://doi.org/10.1177/00405175211068369

    Article  CAS  Google Scholar 

  23. Arslan ME, Kurt MS, Aslan N, Kadi A, Oner S, Cobanoglu S, Yazici A (2022) Structural, biocompatibility, and antibacterial properties of Ge-DLC nanocomposite for biomedical applications. J Biomed Mater Res B 110:1667–1674. https://doi.org/10.1002/jbm.b.35027

    Article  CAS  Google Scholar 

  24. Fan JY, Chu PK (2010) Group IV Nanoparticles: synthesis, properties, and biological applications. Small 6:2080–2098. https://doi.org/10.1002/smll.201000543

    Article  CAS  Google Scholar 

  25. Yuan Z, Tao BL, He Y, Liu J, Lin CC, Shen XK, Yu YL, Mu CY, Liu P, Cai KY (2019) Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation. Biomaterials 217:119290. https://doi.org/10.1016/j.biomaterials.2019.119290

    Article  CAS  Google Scholar 

  26. Bian D, Zhou WR, Deng JX, Liu Y, Li WT, Chu X, Xiu P, Cai H, Kou YH, Jiang BG, Zheng YF (2017) Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. Acta Biomater 64:421–436. https://doi.org/10.1016/j.actbio.2017.10.004

    Article  CAS  Google Scholar 

  27. Zhou YL, Niinomi M (2009) Ti-25Ta alloy with the best mechanical compatibility in Ti-Ta alloys for biomedical applications. Mat Sci Eng C Mater 29:1061–1065. https://doi.org/10.1016/j.msec.2008.09.012

    Article  CAS  Google Scholar 

  28. Gao Y, Wang SQ, Yang CY, An N, Liu Z, Yan M, Guo CS (2019) A near-infrared responsive germanium complex of Ge/GeO2 for targeted tumor phototherapy. J Mater Chem B 7:5056–5064. https://doi.org/10.1039/C9TB00548J

    Article  CAS  Google Scholar 

  29. Li Y, Zhao TT, Wei S, Xiang Y, Chen H (2010) Effect of Ta2O5/TiO2 thin film on mechanical properties, corrosion and cell behavior of the NiTi alloy implanted with tantalum. Mat Sci Eng C Mater 30:1227–1235. https://doi.org/10.1016/j.msec.2010.07.001

    Article  CAS  Google Scholar 

  30. He S, Duan CY, Wang S, Yu Y, Chan YK, Shi XY, Huang JH, Wang ST, Peng SJ, Deng Y (2022) Fusion peptide-engineered polyetheretherketone implants with photo-assisted anti-pathogen and enhanced angiogenesis for in vivo osseointegrative fixation. Chem Eng J 446:137453. https://doi.org/10.1016/j.cej.2022.137453

    Article  CAS  Google Scholar 

  31. Liu ZG, Liu Y, Liu S, Wang DX, Jin J, Sun LD, Wang Q, Yi Z (2021) The effects of TiO2 nanotubes on the biocompatibility of 3D printed Cu-bearing TC4 alloy. Mater Des 207:109831. https://doi.org/10.1016/j.matdes.2021.109831

    Article  CAS  Google Scholar 

  32. Asadullah S, Mei SQ, Wang DQ, Yao Y, Pan YK, Wang DL, Guo H, Wei J (2020) Sulfonated porous surface of tantalum pentoxide/polyimide composite with micro-submicro structures displaying antibacterial performances and stimulating cell responses. Mater Des 190:108510. https://doi.org/10.1016/j.matdes.2020.108510

    Article  CAS  Google Scholar 

  33. Li CY, Yu C, Zeng RC, Zhang BC, Cui LY, Wan J, Xia Y (2019) In vitro corrosion resistance of a Ta2O5 nanofilm on MAO coated magnesium alloy AZ31 by atomic layer deposition. Bioact Mater 5:34–43. https://doi.org/10.1016/j.bioactmat.2019.12.001

    Article  Google Scholar 

  34. Zhang H, Liu K, Lu MM, Liu L, Yan YZ, Chu ZZ, Ge YR, Wang T, Qiu J, Bu SS, Tang CB (2021) Micro/nanostructured calcium phytate coating on titanium fabricated by chemical conversion deposition for biomedical application. Mat Sci Eng C Mater 118:111402. https://doi.org/10.1016/j.msec.2020.111402

    Article  CAS  Google Scholar 

  35. Ji YJ, Zhang HC, Ru JY, Wang F, Xu M, Zhou QR, Stanikzai H, Yerlan I, Xu ZY, Niu YF, Wei J (2021) Creating micro-submicro structure and grafting hydroxyl group on PEEK by femtosecond laser and hydroxylation to synergistically activate cellular response. Mater Des 199:109413. https://doi.org/10.1016/j.matdes.2020.109413

    Article  CAS  Google Scholar 

  36. Zhou XF, Cheng X, Xing DL, Ge Q, Li Y, Luan XH, Gu N, Qian YZ (2021) Ca ions chelation, collagen I incorporation and 3D bionic PLGA/PCL electrospun architecture to enhance osteogenic differentiation. Mater Des 198:109300. https://doi.org/10.1016/j.matdes.2020.109300

    Article  CAS  Google Scholar 

  37. Hou FS, Jiang W, Zhang Y, Tang JC, Li D, Zhao B, Wang L, Gu Y, Cui WG, Chen L (2022) Biodegradable dual-crosslinked adhesive glue for fixation and promotion of osteogenesis. Chem Eng J 427:132000. https://doi.org/10.1016/j.cej.2021.132000

    Article  CAS  Google Scholar 

  38. Sun JY, Wei L, Liu XY, Li JY, Li BE, Wang GC, Meng FH (2009) Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. Acta Biomater 5:1284–1293. https://doi.org/10.1016/j.actbio.2008.10.011

    Article  CAS  Google Scholar 

  39. Zhang YL, Chen LJ, Liu CD, Feng XL, Wei LM, Shao LQ (2016) Self-assembly chitosan/gelatin composite coating on icariin-modified TiO2 nanotubes for the regulation of osteoblast bioactivity. Mater Des 92:471–479. https://doi.org/10.1016/j.matdes.2015.12.023

    Article  CAS  Google Scholar 

  40. Yu WZ, Zhang YZ, Liu XM, Xiang YM, Li ZY, Wu SL (2018) Synergistic antibacterial activity of multi components in lysozyme/chitosan/silver/hydroxyapatite hybrid coating. Mater Des 139:351–362. https://doi.org/10.1016/j.matdes.2017.11.018

    Article  CAS  Google Scholar 

  41. Fialho L, Grenho L, Fernandes MH, Carvalho S (2021) Porous tantalum oxide with osteoconductive elements and antibacterial core-shell nanoparticles: a new generation of materials for dental implants. Mat Sci Eng C Mater 120:111761. https://doi.org/10.1016/j.msec.2020.111761

    Article  CAS  Google Scholar 

  42. Chung J, Lee S (2014) Development of nanofibrous membranes with far-infrared radiation and their antimicrobial properties. Fibers Polym 15:1153–1159. https://doi.org/10.1007/s12221-014-1153-4

    Article  CAS  Google Scholar 

  43. Li YL, Xiao Y, Liu CS (2017) The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem Rev 117:4376–4421. https://doi.org/10.1021/acs.chemrev.6b00654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The grants were from the National Natural Science Foundation of China (81772343, 32171340), Natural Science Foundation of Jilin Province (YDZJ202201ZYTS281) and Finance Department of Jilin Province, P.R. China (G. No. 3D5197435429).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, W.J. and Y.Z.; Data curation, Y.H. and X.W.; Formal analysis, W.J.; Investigation, W.J. and Y.S.; Methodology, W.J. and F.W.; Project administration, Y.Z.; Resources, Y.H.; Supervision, Y.Z.; Validation, F.W. and X.Z.; Writing—original draft, W.J. and Y.S.; Writing—review & editing, J.W. and Y.Z.

Corresponding author

Correspondence to Yiqun Zhang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Sun, Y., Wang, F. et al. An anti-corrosion MAO coating containing germanium dioxide and tantalum pentoxide on titanium surface for facilitating osteoblastic differentiation and killing bacteria. J Mater Sci 58, 18169–18186 (2023). https://doi.org/10.1007/s10853-023-09186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09186-9

Navigation