Skip to main content
Log in

Silk fibroin/chitosan pH-sensitive controlled microneedles

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silk fibroin is a widely used biocompatible medical material with tunable mechanical, degradability and environmental non-toxicity. This paper prepared the silk fibroin/chitosan hydrogel microneedle with pH sensitivity by blending silk fibroin with chitosan to induce graft cross-linking. The cross-linked silk fibroin/chitosan microneedles network is expanded by hydrogen ions and water molecules, forming a more significant swelling. In vitro, the transdermal drug release showed that insulin loaded in microneedles exhibited pH-sensitive drug release behavior and was released faster under acidic conditions than under neutral conditions. By changing the pH of the solution, microneedles can achieve a stimulating response to the environment, thereby intelligently regulating the transdermal release of insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ogurtsova K, Da Rocha Fernandes JD, Huang Y et al (2017) IDF Diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50. https://doi.org/10.1016/j.diabres.2017.03.024

    Article  CAS  Google Scholar 

  2. Yaribeygi H, Atkin SL, Sahebkar A (2019) A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J Cell Physiol 234:1300–1312. https://doi.org/10.1002/jcp.27164

    Article  CAS  Google Scholar 

  3. Galicia-Garcia U, Benito-Vicente A, Jebari S et al (2020) Pathophysiology of type 2 diabetes mellitus. IJMS 21:6275. https://doi.org/10.3390/ijms21176275

    Article  CAS  Google Scholar 

  4. Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A (2020) Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev 2020:1–13. https://doi.org/10.1155/2020/8609213

    Article  CAS  Google Scholar 

  5. Chaudhury A, Duvoor C, Reddy Dendi VS et al (2017) Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol 8:6. https://doi.org/10.3389/fendo.2017.00006

    Article  Google Scholar 

  6. Phan VHG, Mathiyalagan R, Nguyen MT et al (2022) Ionically cross-linked alginate-chitosan core-shell hydrogel beads for oral delivery of insulin. Int J Biol Macromol 222:262–271. https://doi.org/10.1016/j.ijbiomac.2022.09.165

    Article  CAS  Google Scholar 

  7. Zhao J, Xu G, Yao X et al (2022) Microneedle-based insulin transdermal delivery system: current status and translation challenges. Drug Deliv and Transl Res 12:2403–2427. https://doi.org/10.1007/s13346-021-01077-3

    Article  CAS  Google Scholar 

  8. Chen R, Weng J, Chow SF, Lakerveld R (2021) Integrated continuous crystallization and spray drying of insulin for pulmonary drug delivery. Cryst Growth Des 21:501–511. https://doi.org/10.1021/acs.cgd.0c01312

    Article  CAS  Google Scholar 

  9. Bakh NA, Cortinas AB, Weiss MA et al (2017) Glucose-responsive insulin by molecular and physical design. Nature Chem 9:937–944. https://doi.org/10.1038/nchem.2857

    Article  CAS  Google Scholar 

  10. Jin X, Zhu DD, Chen BZ et al (2018) Insulin delivery systems combined with microneedle technology. Adv Drug Deliv Rev 127:119–137. https://doi.org/10.1016/j.addr.2018.03.011

    Article  CAS  Google Scholar 

  11. Sabbagh F, Muhamad II, Niazmand R et al (2022) Recent progress in polymeric non-invasive insulin delivery. Int J Biol Macromol 203:222–243. https://doi.org/10.1016/j.ijbiomac.2022.01.134

    Article  CAS  Google Scholar 

  12. Cikrikci S, Mert B, Oztop MH (2018) Development of pH sensitive alginate/gum tragacanth based hydrogels for oral insulin delivery. J Agric Food Chem 66:11784–11796. https://doi.org/10.1021/acs.jafc.8b02525

    Article  CAS  Google Scholar 

  13. Wang S, Zheng H, Zhou L et al (2020) Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett 20:5149–5158. https://doi.org/10.1021/acs.nanolett.0c01371

    Article  CAS  Google Scholar 

  14. Zheng L, Zhu D, Wang W et al (2022) A silk-microneedle patch to detect glucose in the interstitial fluid of skin or plant tissue. Sens Actuators, B Chem 372:132626. https://doi.org/10.1016/j.snb.2022.132626

    Article  CAS  Google Scholar 

  15. Ulloa Rojas JE, Oliveira VLD, De Araujo DR et al (2022) Silk fibroin/poly(vinyl alcohol) microneedles as carriers for the delivery of singlet oxygen photosensitizers. ACS Biomater Sci Eng 8:128–139. https://doi.org/10.1021/acsbiomaterials.1c00913

    Article  CAS  Google Scholar 

  16. Jung JH, Jin SG (2021) Microneedle for transdermal drug delivery: current trends and fabrication. J Pharm Investig 51:503–517. https://doi.org/10.1007/s40005-021-00512-4

    Article  Google Scholar 

  17. Yu J, Wang J, Zhang Y et al (2020) Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat Biomed Eng 4:499–506. https://doi.org/10.1038/s41551-019-0508-y

    Article  CAS  Google Scholar 

  18. Chen BZ, Zhang LQ, Xia YY et al (2020) A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Sci Adv 6:eaba7260. https://doi.org/10.1126/sciadv.aba7260

    Article  CAS  Google Scholar 

  19. Turner JG, White LR, Estrela P et al (2021) Hydrogel-forming microneedles: current advancements and future trends. Macromol Biosci 21:2000307. https://doi.org/10.1002/mabi.202000307

    Article  CAS  Google Scholar 

  20. Farokhi M, Mottaghitalab F, Samani S et al (2018) Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv 36:68–91. https://doi.org/10.1016/j.biotechadv.2017.10.001

    Article  CAS  Google Scholar 

  21. Nguyen TP, Nguyen QV, Nguyen VH et al (2019) Silk fibroin-based biomaterials for biomedical applications: a review. Polymers 11:1933. https://doi.org/10.3390/polym11121933

    Article  CAS  Google Scholar 

  22. Ways M, Lau W, Khutoryanskiy V (2018) Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 10:267. https://doi.org/10.3390/polym10030267

    Article  CAS  Google Scholar 

  23. Li J, Zhuang S (2020) Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives. Eur Polymer J 138:109984. https://doi.org/10.1016/j.eurpolymj.2020.109984

    Article  CAS  Google Scholar 

  24. Negm NA, Hefni HHH, Abd-Elaal AAA et al (2020) Advancement on modification of chitosan biopolymer and its potential applications. Int J Biol Macromol 152:681–702. https://doi.org/10.1016/j.ijbiomac.2020.02.196

    Article  CAS  Google Scholar 

  25. Patrulea V, Ostafe V, Borchard G et al (2015) Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm 97:417–426. https://doi.org/10.1016/j.ejpb.2015.08.004

    Article  CAS  Google Scholar 

  26. Wang W, Meng Q, Li Q et al (2020) Chitosan derivatives and their application in biomedicine. IJMS 21:487. https://doi.org/10.3390/ijms21020487

    Article  CAS  Google Scholar 

  27. Sahariah P, Másson M (2017) Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship. Biomacromol 18:3846–3868. https://doi.org/10.1021/acs.biomac.7b01058

    Article  CAS  Google Scholar 

  28. Verlee A, Mincke S, Stevens CV (2017) Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohyd Polym 164:268–283. https://doi.org/10.1016/j.carbpol.2017.02.001

    Article  CAS  Google Scholar 

  29. Tuwalska A, Grabska-Zielińska S, Sionkowska A (2022) Chitosan/silk fibroin materials for biomedical applications—a review. Polymers 14:1343. https://doi.org/10.3390/polym14071343

    Article  CAS  Google Scholar 

  30. Xu Z, Chen T, Zhang K et al (2021) Silk fibroin/chitosan hydrogel with antibacterial, hemostatic and sustained drug-release activities. Polym Int 70:1741–1751. https://doi.org/10.1002/pi.6275

    Article  CAS  Google Scholar 

  31. Zhu M, Liu Y, Jiang F et al (2020) Combined silk fibroin microneedles for insulin delivery. ACS Biomater Sci Eng 6:3422–3429. https://doi.org/10.1021/acsbiomaterials.0c00273

    Article  CAS  Google Scholar 

  32. Wang S, Zhu M, Zhao L et al (2019) Insulin-loaded silk fibroin microneedles as sustained release system. ACS Biomater Sci Eng 5:1887–1894. https://doi.org/10.1021/acsbiomaterials.9b00229

    Article  CAS  Google Scholar 

  33. Cao J, Liu Y, Qi Z et al (2022) Sustained release of insulin from silk microneedles. J Drug Deliv Sci Technol 74:103611. https://doi.org/10.1016/j.jddst.2022.103611

    Article  CAS  Google Scholar 

  34. Yin Z, Kuang D, Wang S et al (2018) Swellable silk fibroin microneedles for transdermal drug delivery. Int J Biol Macromol 106:48–56. https://doi.org/10.1016/j.ijbiomac.2017.07.178

    Article  CAS  Google Scholar 

  35. Tao X, Jiang F, Cheng K et al (2021) Synthesis of pH and glucose responsive silk fibroin hydrogels. IJMS 22:7107. https://doi.org/10.3390/ijms22137107

    Article  CAS  Google Scholar 

  36. Chen S, Matsumoto H, Moro-oka Y et al (2019) Smart Microneedle fabricated with silk fibroin combined semi-interpenetrating network hydrogel for glucose-responsive insulin delivery. ACS Biomater Sci Eng 5:5781–5789. https://doi.org/10.1021/acsbiomaterials.9b00532

    Article  CAS  Google Scholar 

  37. Chen S, Matsumoto H, Moro-oka Y et al (2019) Microneedle-array patch fabricated with enzyme-free polymeric components capable of on-demand insulin delivery. Adv Funct Mater 29:1807369. https://doi.org/10.1002/adfm.201807369

    Article  CAS  Google Scholar 

  38. Shah D, Guo Y, Ocando J, Shao J (2019) FITC labeling of human insulin and transport of FITC-insulin conjugates through MDCK cell monolayer. J Pharm Analy 9:400–405. https://doi.org/10.1016/j.jpha.2019.08.002

    Article  Google Scholar 

  39. Cammarata CR, Hughes ME, Ofner CM (2015) Carbodiimide induced cross-linking, ligand addition, and degradation in gelatin. Mol Pharm 12:783–793. https://doi.org/10.1021/mp5006118

    Article  CAS  Google Scholar 

  40. Sow LC, Nicole Chong JM, Liao QX et al (2018) Effects of κ-carrageenan on the structure and rheological properties of fish gelatin. J Food Eng 239:92–103. https://doi.org/10.1016/j.jfoodeng.2018.05.035

    Article  CAS  Google Scholar 

  41. Xu Z, Tang E, Zhao H (2019) An environmentally sensitive silk fibroin/chitosan hydrogel and its drug release behaviors. Polymers 11:1980. https://doi.org/10.3390/polym11121980

    Article  CAS  Google Scholar 

  42. Ke CL, Deng FS, Chuang CY et al (2021) Antimicrobial actions and applications of chitosan. Polymers 13:904. https://doi.org/10.3390/polym13060904

    Article  CAS  Google Scholar 

  43. Yu D, Feng J, You H et al (2022) The microstructure, antibacterial and antitumor activities of chitosan oligosaccharides and derivatives. Mar Drugs 20:69. https://doi.org/10.3390/md20010069

    Article  CAS  Google Scholar 

  44. Chen X, Yu H, Wang L et al (2021) Cross-linking-density-changeable microneedle patch prepared from a glucose-responsive hydrogel for insulin delivery. ACS Biomater Sci Eng 7:4870–4882. https://doi.org/10.1021/acsbiomaterials.1c01073

    Article  CAS  Google Scholar 

  45. Zong Q, Zhou R, Zhao Z et al (2022) Glucose-responsive insulin microneedle patch based on phenylboronic acid for 1 diabetes treatment. Eur Polymer J 173:111217. https://doi.org/10.1016/j.eurpolymj.2022.111217

    Article  CAS  Google Scholar 

  46. Tong Z, Zhou J, Zhong J et al (2018) Glucose- and H2O2 -responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats. ACS Appl Mater Interfaces 10:20014–20024. https://doi.org/10.1021/acsami.8b04484

    Article  CAS  Google Scholar 

  47. Zhang H, Gu Z, Li W et al (2022) pH-sensitive O-carboxymethyl chitosan/sodium alginate nanohydrogel for enhanced oral delivery of insulin. Int J Biol Macromol 223:433–445. https://doi.org/10.1016/j.ijbiomac.2022.10.274

    Article  CAS  Google Scholar 

  48. Mallawarachchi S, Mahadevan A, Gejji V, Fernando S (2019) Mechanics of controlled release of insulin entrapped in polyacrylic acid gels via variable electrical stimuli. Drug Deliv Transl Res 9:783–794. https://doi.org/10.1007/s13346-019-00620-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (Grant No. 51973144), Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 20KJA540002), PAPD and Six Talent Peaks Project in Jiangsu Province (Grant No. SWYY-038) supported this work.

Author information

Authors and Affiliations

Authors

Contributions

JT wrote the paper; KD conceived and designed the experiments; QZ and TG performed the experiments; YX analyzed the data; JT contributed reagents/materials/analysis tools; KSC and LS conducted writing and review. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shenzhou Lu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, T., Kuang, D., Qi, Z. et al. Silk fibroin/chitosan pH-sensitive controlled microneedles. J Mater Sci 58, 17711–17725 (2023). https://doi.org/10.1007/s10853-023-09148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09148-1

Navigation