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ABSTRACT

Over the last century, accumulation of microplastic has emerged as a greater threat to

theenvironment,plants,microorganismsandevenhumanbeings.Microplasticscanbe

intentionallyproduced for industries suchas cosmetics, or theymaybeunintentionally

generated from degradation of bulk plastic debris. Furthermore, mismanagement of

plastic waste is amajor source ofmicroplastics.When ingested,microplastics can alter

several physical, chemical and biological processes in living organisms. Thus, their

toxicity silentlyspreads its roots into thebiosphere.Unfortunately, current strategies for

the elimination of microplastics are not sufficient for their complete removal and

degradation. Therefore, the adoption of green innovative technologies is the first step

toward a microplastic-free environment. However, advances for its effective degra-

dation and elimination are hindered by our limited understanding. This literature

study investigates microplastic comprehensively, covering their sources, fate, ecolog-

ical impacts and their effects on biological processes. It includes an analysis of

microplastics in Indian rivers, explores methods for its eradication and degradation,

emphasizes plastic recycling and offers future recommendations to pave way toward

achieving a microplastic-free environment.
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GRAPHICAL ABSTRACT

Introduction

Plastic has progressed from essentially non-existent

to a pervasive and important aspect of contemporary

life throughout the last century. It has been estimated

that plastic manufacture has significantly expanded

over the last few decades. According to a recent

report, global plastic production had soared to 360

million tons in 2018 [1]. Asia stands as the leading

producer, accounting for 50% of the total, followed by

North American Free Trade Agreement (NAFTA)

and European countries [1]. Plastic can be easily

produced via facile chemical or physical reactions.

The two basic procedures are polymerization and

polycondensation, which fundamentally change the

primary components into polymer chains, giving rise

to different compositions of plastic. These are irre-

versible processes, and once they are disposed of,

plastics make way into various biological, chemical

and environmental systems. Supplanted usage of

plastics in our day-to-day lives is due to their high

durability, inertness and comparative low cost. Due

to their extreme adaptability, plastics have become an

essential component of the medical industry. Despite

the substantial global plastic waste production, only a

small fraction undergoes recycling. Most of this

generated plastic waste is dumped or burned in the

landfills [2]. The disposal of plastic into landfills

ultimately causes detrimental effects on the environ-

ment. The situation is worse as their natural disinte-

gration process becomes more difficult, subsequently

accumulating plastic in practically every form of

environment [3].

The escalating issue of plastic pollution is promi-

nently evident by the pervasive occurrence of plastic

waste in terrestrial and aquatic ecosystems. Extensive

scientific investigations have been conducted on

developing analytical methodologies, exploring the

sources and abundance, fate and degradation of

plastics in the environment, as well as risks to natural

environments, wildlife and even human health.

However, the bulky macro-sized debris of plastic

exert limited direct influence on both biotic and abi-

otic components of the environment. It is, rather, at

the smaller—the micro- and nanosized level, that

these pollutants possess the potential to permeate the

biosphere.

In 2004, Thompson et al. [4] introduced the world

with a new type of plastic pollutant, termed

‘‘Microplastic.’’ These are plastics having an effective

size\ 5 mm. Currently, with the recent advance-

ment in studies on plastic-derived pollution in our

environment, plastic trash has been generically clas-

sified into four size classes: nanoplastics (NPs),

microplastics (MPs), mesoplastics and macroplastics
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(MaPs) [5]. NPs comprise plastic size less than

100 nm, MPs range between 0.1 and 5 mm, meso-

plastics range between 5 and 25 mm and MaPs

comprise plastic size greater than 25 mm [5]. Vast

accumulation of MaPs, originating from domestic,

commercial and industrial waste, proliferate on land

and water, causing an intoxicating impact on all land,

marine, and freshwater life forms. For instance, it has

been reported that suffocation due to consumption of

plastic bags can lead to death in cattle [6]. The accu-

mulated MaPs are further broken down into MPs by

various physical, chemical and biological processes.

These MPs can penetrate aquatic and terrestrial

environments and eventually find their way into the

human body.

Intriguingly, recent studies have determined that

the detrimental effect of the total plastic litter gener-

ated on our planet is a contribution of microplastics

and nanoplastics rather than MaPs [7]. According to

environmental surveys, the accumulation of MaPs

remains steady or decreases, whereas that of MPs

increases [8]. Various studies have revealed MPs can

be derived from microbeads and fibers, which is

depicted in Fig. 1 [9]. Similar studies were carried out

on the Juhu beach (Mumbai, India), where plastic

litter was assessed to significantly accumulate MPs

[10]. Other worldwide studies have also concluded

that MPs can be present in the biosphere, creating

toxic consequences among life forms. Similarly, it has

also been reported that the contamination of MPs in

aquatic ecosystems promotes biofouling, which

hampers their buoyancy [11]. Thus, it must be

emphasized, despite the presence of four different

plastic pollutants in our ecosystem, MPs pose the

largest threat as compared to macro-, meso- and

nanoplastics. Therefore, due to the numerous con-

cerns related to MP contamination, the uncontrolled

discharge in the biosphere must be regulated thor-

oughly. However, a lack of understanding and ana-

lytical approaches for MP synthesis, analysis and

removal impedes further growth toward an MP-free

environment.

This literature study aims to address the novel

aspects of microplastics, demonstrating their diverse

sources, fate and ecological consequences, with a

particular emphasis on their potential impacts on

biological processes across a wide variety of species.

This review presents a novel investigation into an

unexplored area of concern, specifically focusing on

the prevalence of MP concentrations in rivers located

within developing countries. This aspect has not been

previously examined in recent studies, making this

review the first to discuss this particular scenario in

Indian rivers. Furthermore, this literature study

Figure 1 (A) and (B) Primary

MPs derived from personal

care products, (C) and

(D) secondary MPs derived

from synthetic textiles and

fibers. Reproduced with

permission from reference [9].

Copyright � 2018 Elsevier

Ltd. All rights reserved.
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rigorously consolidates advanced approaches related

to the eradication and degradation of MPs, empha-

sizing recent advancements in thermal degradation,

photocatalytic degradation, and biodegradation

techniques tailored to the characteristics of MPs.

Moreover, in the pursuit to optimize treatment steps

within wastewater treatment plants, an array of

techniques specific to effective MP removal have

been succinctly elucidated. Additionally, it provides

a unique perspective on the significance of plastic

recycling. Finally, this study highlights the challenges

associated with MP degradation and removal meth-

ods and offers novel insights and future recommen-

dations to facilitate the attainment of MP-free

environment. Such a study will aid in creating a

better understanding of the current MPs pollutants as

well as solutions to address them.

Sources and fate

Plastic has permeated nearly every aspect of modern

life since the industrial revolution. Their diverse

applications are credited to its low cost, durability,

abundance, lightweight, and malleability. Different

grades of plastics are incorporated in consumer and

industrial plastic products. Recent estimations have

predicted that annual plastic waste could climb up to

53 million metric tons, gradually exceeding our

ability to halt plastic pollutants leaking into various

ecosystems [12]. Some of the major demanded plas-

tics are polyvinyl chloride (PVC), polyethylene (PE),

polyacrylonitrile (PAN), polyethylene terephthalate

(PET), polypropylene (PP), polyamide (PA), poly-

urethane (PU) and polystyrene (PS). Applications of

these plastics range from basic life necessities such as

a mere plastic toothbrush and containers to major

industrial requirements such are tires and synthetic

fibers. In addition to these polymers, recent studies

were also able to raise concerns regarding the toxic

effects of increasing usage of poly lactic acid (PLA)

[13]. PLA has emerged as a potential substitute for

petroleum-based plastics. However, recent research

highlights that PLA is compostable rather than

biodegradable in natural environments, resulting in

the generation of MPs [14, 15]. Subsequently, the

progressive accumulation, as a resultant of the linear

flow of plastics, impacts the environment in many

folds. It is important to consider all of the variables

that can affect plastic particle’s characteristics over

the course of its life, from manufacture to consump-

tion. The seeping of MPs into various ecosystems can

occur through two ways: primary and secondary

sources.

Primary sources of MPs are industrially produced as

such and are directly released in the form of small par-

ticulates [2]. Most often consumer and industrial prod-

ucts such as cosmetics, hair care and skin care products,

scrubbing agents in toiletries, deodorants, inks, and

paints are major primary sources of MPs (Fig. 2). Per-

sonal care items containing microbeads, such as tooth-

paste, shower gels, and facial cleansers, are some of the

major primary contributors [16]. MPs derived from pri-

marysourcesare calledprimaryMPs [17]. So, thesekinds

ofMPs are intentionally produced and designed as such

for applications such as plastic microspheres, synthetic

textile and personal care products.

MaPs can undergo fragmentation, aging, or

weathering to produce smaller bits of plastics, known

as microplastics (MPs). This leads to generation of

secondary source of MPs. So, secondary MPs are

derived from unintentional chemical, physical or

biological strain on MaPs, leading to fragmentation

and production of MPs, which can potentially enter

different aquatic and terrestrial ecosystems [5]. Gen-

erally, weathering and aging are caused by the

transformation and breakdown of the polymers

through the combination of a variety of complex

processes [5]. Significant contribution of secondary

MPs is seen from the fragmentation of plastic debris

such as synthetic fibers, tires and coatings [5]. These

MPs which may leach into water bodies can be mis-

taken as food by worms and fishes and make their

way up into the food chain, subsequently contami-

nating human food [18, 19].

In an attempt to qualitatively and quantitatively

understand the degradative fate and persistence of

microplastic fibers (MPFs), such as PET, PAN and

PA, a group of researchers have explored photolytic

degradation of MPFs on UV exposure for a period of

10 months [20]. It was observed that PET and PA

exhibited significant fragmentation and surface

changes, while PAN did not undergo any drastic

changes (Fig. 3). However, their study suggests that

more elaborative analysis needs to be performed for

assessing the existence, impact and consequences of

chemical additive leaching from these MPFs. Besides

the direct effect of MPs, chemical additives in plastics

also need to be thoroughly investigated. Chemical

additives have been used as UV stabilizers, softeners
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and flame retardants for the production of plastics

with enhanced physical properties [5]. Various

harmful plastic chemical additives, such as

bisphenols, phthalates, and brominated flames

retardants, are reported to leach from the polymer

surface into its immediate surroundings under the

Figure 2 MPs obtained from direct discharge of primary sources and indirect generation due to fragmentation of macroplastic debris

forms the secondary source.

Figure 3 An environmentally relevant study of fragmentation of

common MPFs (PET, PA and PAN) from synthetic textiles under

the exposure of UV light; UV ultraviolet. Reproduced with

permission from reference [20]. Copyright � 2020 The Author(s).

Published by Elsevier Ltd.
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influence of environmental parameters such as extent

of exposure to UV light and temperature [21]. Thus,

the combined leaching of MPs and plastic chemical

additives is a crucial aspect of plastic-derived

pollution.

The common mode of MPs entry in the terrestrial

system is through soil via human activities such as

agricultural irrigation, plastics mulching, incomplete

MPs removal from sludge extraction methods and

atmospheric deposition of fibrous MPs [22]. This can

hamper various soil properties such as porosity and

aggregate structure, consequently affecting enzyme

activity and diversity of microbial functions in soil

[23]. Sludge compost utilized for agricultural activi-

ties is often used as fertilizers, eventually contribut-

ing to MPs content in the soil [24]. Recent studies

have shown that fibrous MPs consist of components

such as PS, PE and PVC [25]. Also, a major negative

impact is observed on plant communities due to the

atmospheric deposition flux of MPs [26]. Thus, it can

be concluded that the contribution of MPs in our

environment can be the result of various pathways,

and the regulation of their mitigation can be a great

challenge in the coming era.

Status of Indian rivers

India is a developing country and is far from being

developed. The inadequate implementation of

advanced technologies has resulted in a lack of

effective monitoring and regulated control over the

release of contaminated industrial effluents into

water bodies such as rivers [27]. These water bodies

can act as primary conduits for the transportation of

MPS from terrestrial to marine ecosystems [28]. The

Netravathi River is the largest river in Southern

Karnataka, India, which reported 288 particles/kg of

MPs [29]. In a study of the holy river of India, i.e.,

river Ganga, it was found that this magnificent river

was filled with MPs concentration (PET and PE) of

around 99.27–409.86 particles/kg [30]. Another study

alongside the Ganga River stretch of Ballia, Patna,

Bhagalpur, Farakka and Diamond Harbour reported

various size ranges of MPs [31]. About 134.53–581.70

particles/kg of debris and fiber were found in sedi-

ments of the Sabarmati River [32]. In the Brahma-

putra River, MPs within the particle size range of

150 lm–5 mm and 20–150 lm exhibited concentra-

tions range from 20 to 240 particles/kg and 531 to

3485 particles/kg, respectively [33]. Similar studies at

the Indus River for MPs within a size range of

150 lm–5 mm and 20–150 lm exhibited a concen-

tration range around 60–340 particles/kg and

525–1752 particles/kg, respectively [33]. A study on

the Alaknanda River stretch of Uttarakhand region

found different types of MP such as high-density

polyethylene (HDPE), PVC, low-density poly-

ethylene (LDPE), PP, PET and PS with a size range of

1–5 mm [34]. Figure 4 illustrates the varying

microplastic concentrations (microplastic/kg) in dif-

ferent Indian rivers, including Netravathi, Ganga,

Sabarmati, Brahmaputra, and Indus. Among them,

the Sabarmati River exhibits the highest recorded

prevalence of MPs which can be prominently attrib-

uted to the proximity of multiple industrial estab-

lishments in its vicinity.

Consequences

Aquatic ecosystem

Since plastic production started to begin, the drastic

effect of microplastic has been increasing, causing

negative impact on aquatic fauna and flora [35].

Studies that have been conducted on this subject

have examined aquatic phytoplankton (microalgae),

with the majority of them concentrating on the

dynamics of phytoplankton growth following expo-

sure to MPs. Some studies have also reported that the

exposure to MPs may significantly slow the growth

of microalgae [36].

Freshwater microalgae studies revealed that expo-

sure to MPs could alter their genes expression and

certain metabolic pathways besides causing a wide

range of physical damages and oxidative stressors to

the algae cells [37]. The estimated effects of MPs

uptake and toxicity are hypothesized to be based on

simple process, such as physical adsorption of micro-

and even nano-scale plastics. These MPs adhere to

the surfaces of algae cells due to which an algal cell

may face physical blockage from light and gas

exchange [38]. This affect was observed in Chlorella

and Scenedesmus where the surface accumulation of

positively charged plastic NPs caused a decrease in

the activity of their photosynthetic processes [38]. In

another study, growth, photosynthetic efficiency and

chlorophyll content were all negatively impacted in

Skeletonema costatum when it was exposed to PVC
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microspheres [39]. Investigations using SEM imaging

supported the hypothesis that the adverse effects

were caused by the microspheres adhering to and

accumulating on cell surfaces [39]. Only at a high

concentrations (41.5 mg/L), MPs showed a substan-

tial detrimental effect on microalgae (Tetraselmis

chuii) growth, while at very low quantities (0.9, 2.1

mg/L), a drop in the chlorophyll count was reported

[39].

Marine organisms from different trophic levels

have a certain level of MP ingestion [40]. Most of the

marine organisms receive MP from seawater or from

lower trophic levels [41]. Several aquatic organisms

such as bivalves, fishes, zooplanktons, benthic

invertebrates, and large marine mammals receive MP

as food [42]. MP ingestion depends on the particle

size and some extent to physiological and behavioral

character of the marine vertebrates and invertebrates

[43]. Two shapes of MP, fibers and fragment, are

mainly reported in aquatic organisms [44]. Several

ecotoxicological effects due to different MPs have

been documented in various groups of aquatic

organisms as shown in Fig. 5. In aquatic microor-

ganisms, MPs can also enter in circulatory systems

[45]. When aquatic organisms ingest MPs, these small

particles can easily enter the cells and retain in their

tissues. For instance, in the hemolymph of blue

mussels, M. edulis, particle size of 9.6 lm has been

recorded [46]. Additionally, reduced reproduction

capability, body size and neonatal malformation are

some other ecotoxicological effects observed in

Daphnia magna due to the exposure of nanosized

polystyrene (PS) particles [47].

Microplastics have also been found in gills,

hemolymph and digestive tissues of Mediterranean

mussel (Mytilus galloprovincialis) and have been

determined to be responsible for changes in gene

expression profile and altered immunological

response [48]. Other detrimental effects such as cir-

culatory disorder, inflammation and alteration in

intestinal tissues in the species of Girella fish (Girella

laevifrons) have also been reported in recent studies

[49]. In Nile tilapia (Oreochromis niloticus), it was

observed that the mortality of early juvenile tilapia

due to anemia and perturbations was caused by MPs

[50]. Similarly, mortality of Planktonic crustacean

(Daphnia magna) increased due to the alteration of

toxicity of pollutants such as herbicides by

microplastics [50]. MPs toxicity has also been the

cause behind lipid accumulations in liver and

inflammations in zebra fishes [51]. This was also

evident in a recent study, where an attempt to

understand the effects of PE-MPs on Physalaemus

cuvieri tadpoles reported that exposure to PE-MPs,

along with a mixture of pollutants, certain concen-

trations of MPs reflected various biochemical and

physiological responses [52, 53]. Such a study pro-

vides valuable insights into the unexplored effects

that MPs exposure can have on amphibians. In fact,

swimming capabilities have also been reported to be

compromised due to adhesion of MP particles to

appendages of copepod [54]. More recently, in Far-

rer’s scallop (Chlamys farreri) MPs have been deter-

mined to cause ultrastructural changes in gills and

digestive glands [55]. Thus, MPs have triggered a

massive impact on aquatic, both marine and fresh-

water ecosystems, causing diverse damages in

Figure 4 Graphical

representation of different

concentration of microplastic

particles in Indian rivers which

include Sabarmati [32], Ganga

[30], Netravathi [29], Indus

[33] and Brahmaputra [33].
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various aquatic life forms. Various recent literature

studies have suggested standardizing detection and

analysis methods for valid comparisons. Addition-

ally, conducting large-scale experiments is necessary

to evaluate ecotoxicological effects of MP and their

transport from molecular to ecosystem levels in

aquatic biota [56].

Terrestrial ecosystem

Microplastic pollution analysis for terrestrial ecosys-

tem is essential to minimize its negative impact in

future. In spite of various concentration limits, which

have been imposed by environmental regulations for

industrial effluents, MPs continue to flow into the

terrestrial ecosystem. In this context, a recent mouse

model experiment conducted to evaluate MPs affects

has determined a decrease in the number of sper-

matogenic cells in mice and reported formation of

cavities in testicular tissues due to PS-based MPs [57].

This study showed exposure of micro-PS on mice

decreased the activity of lactate dehydrogenase

(LDH) and succinate dehydrogenase (SDH) enzymes,

which are responsible for sperm development and

energy production, considerably. Besides this, micro-

PS was also reported to aggravate oxidative stress by

increasing reactive oxygen species (ROS) and

malonaldehyde level in mice [57].

MPs can also accumulate in human beings through

various pathways. Sea foods such as fish, marine

animal species, and microalgae are primary sources

of foods in human diet [58, 59]. Additionally, differ-

ent brands of salts are used by humans, which pro-

vides essential nutrients, as well as acts as a food

preservative [60]. In the period 2015–2018, a study

showed that MPs were found in 128 brands of com-

mercial salts [61], thus indicating how deep the roots

of MPs toxicity may have spread in the food chain.

MPs may also enter human body through atmo-

spheric inhalation. Synthetic fabrics, damaged mate-

rials (tires, buildings) and the re-suspension of

microplastics in surfaces are few sources that cause

MPs to be discharged into the air [62]. In the respi-

ratory system, due to large surface area of small

particles like MPs, macrophage movement may be

disrupted which results in chronic inflammation [63].

Additionally, PE used in packaging of drinking bottle

and microwave packaging are, lately, considered as

human carcinogens [64]. In their systematic review,

Pico et al. assessed the presence, movement and

destiny of MPs in raw, processed and bottled water

as well as their potential effects on human health [65].

Furthermore, recent studies have reported that MP

may be released from long-term usage of contact

lenses under sunlight [66], plastic take-out food

containers and food storage containers [67, 68],

Figure 5 Illustration depicting the pathway of MP flow: (a) MP transport from molecular to ecosystem level and (b) uptake of MP from

lower to higher trophic levels.
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plastic chopping boards [69] and disposable face

masks such as those used in COVID-19 [70]. Table 1

presents some of the detrimental impacts of MPs

exposure confirmed through different in vivo and

in vitro studies. However, more of these harmful

effects may have been recorded in the literature over

the last few years, and this is only a small selection

from the large amount of evidence.

A recent study revealed that MPs contribute to

approximately 7% of the total weight of top soil in

contaminated areas [81]. This can be attributed to the

significant durability of MPs in soil, as a result of

limited light and oxygen exposure, allowing them to

persist for more than a decade [43]. Porosity or soil

may be affected due to MP deposition which ulti-

mately alters the aggregation properties [82]. It has

been reported that the vertical migration of MPs is

Table 1 A brief list of some reported hazardous effects caused due to MPs exposure

MP Size

(lm)

Dose Study type Exposure Toxic effect Ref.

PE 30.5 and

6.2

1000 lg/mL Human derived cell lines Direct or

indirect

exposure

Slightly lowered cell viability of

intestinal epithelial and lung

epithelial cells

Increased secretion of IL-1b, IL-
6 and TNFa in murine

macrophages

[71]

PS 1 5 lg/mL Human embryonic

kidney and

hepatocellular liver

cells

24–72 h Reduced cellular proliferation

Morphological changes of both

cell types

Lowered gene expression levels

of glycolytic enzyme

[72]

PS 0.1, 0.5,

1 and

5

500 lg/mL Human colonic epithelial

cell and intestinal

epithelial cells

24 h Significant membrane damage [73]

PS 5 and 10 0.01 mg/day (toxicity tests)

and 0.5 mg/day

(histological analysis)

Mice model 1–28 days Liver inflammation

Affects neurotransmitters

[74]

Pristine PS 5 and 20 10 mL/kg/bw Human in vitro and

rodents’ in vivo system

28 days Reduces hepatic ATP levels

Impaired energy metabolism

[75]

PS 5 and

0.5

100 and 1000 lg/L Mice model Gestation

period

High risk of fatty acid

metabolism disorder

Causes intestinal barrier

dysfunction and gut microbiota

dysbiosis

[76]

PE 30 and

200

2, 20 and 200 lg PE/g Mice model – Increased specific arsenic oral

bioavailability

[77]

PE, PET,

PP, PS

and PVC

150–300 20 mg/mL Mice model 1 week Oxidative damage and

histopathological damage

Potential obesity issues may also

arise

[78]

PE 10–20 100 ppm/100 lL Mice model 2–12 weeks Pre- or post-natal exposure

increases prevalence of autism

spectrum disorder

[79]

MPs – 600 lg/day Mice model 15 days Alters typical structure of RBC

producing aberrant shapes

Also impacts renal and liver

functioning

[80]
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facilitated by large soil particles and dissolved

organic materials. The movement potential of poly-

amide MPs is observed to be the highest, while other

MPs such as PE, PET, and PP also show moderate

movement potential [83].

But MPs could form channel for water movement

in soil, thereby increasing evaporation, it may also

desiccate soil surface by destructing soil structure

integrity [84]. Eventually, such MPs-contaminated

soil poses a significant effect in the case of terrestrial

flora, as these MPs have a direct or indirect impact on

morphology and physiology of plants [85]. However,

generally, uptake of MPs is not favored by plants due

to their high molecular weight, and instead, several

studies have reported nanosized particles are more

easily absorbed by plants and can easily pass through

the cell wall [86, 87]. This is illustrated in Fig. 6,

which depicts MPs/NPs contaminants in soil can

affect plant growth and nutrition in direct and indi-

rect ways. Physiological effects on plants such as

hampered growth of wheat in vegetative and repro-

ductive stage have also been reported [88]. Rice plant

shows decline in growth, oxidative damages and

disrupted gas exchange on exposure to the high dose

(3 mg/l) of PS MPs [89]. It was observed that the MPs

can adhere to the plant’s root surfaces, resulting in

the decrement of water and nutrients uptake [88].

Evidently, few years from now, a significant impact

on plant growth and physiology due to long-term

exposure of MPs may be seen in terrestrial

ecosystems.

Solutions and strategies

Microplastics market is currently a source of global

environmental concern, and the recent increase in

awareness has generated new avenues for research-

ers to work on this subject around the world. There is

an urgent need for control, remediation and removal

of these intoxicating pollutants (MPs) due to the

exponentially rising manufacture and use of plastic

in our daily lives. Thus, replacing the progressive

linear flow model with a circular flow model, such as

the reduce, reuse and recycle (3Rs) approach, can

lead to a sustainable method of management of MPs

in our environment [90].

Wastewater treatment plants

Wastewater treatment plants (WWTPs) often use

various steps to remove the toxic particles and

micropollutants present in the waste matrix. The

concentration of MPs present in different WWTPs can

vary with respect to wastewater sources, demo-

graphics, lifestyle and economy, sampling and

detection methods. Thus, numerous factors can create

challenges in the accurate qualitative and quantita-

tive analysis of MPs. Due to this reason, WWTPs

require multiple treatment steps, namely primary,

secondary and tertiary treatment processes, for

obtaining water fit for reuse. The primary step

involves the usage of appropriate screens or filters.

Nearly 70–98% MPs are believed to be removed

through the primary treatment [91]. The secondary

Figure 6 Schematic representation of inhibition of plant growth and soil parameters due to MPs contamination.
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treatment, usually, consists of biological process to

remove MPs by using appropriate microorganisms.

Unfortunately, this treatment displays a moderate

efficiency ranging within 0.2–14% [9]. This may be

due to the resistance exhibited by MPs to biological

decomposition. Finally, tertiary treatment is the last

stage which involves removal of other harmful solid

matter and inorganic remnants, such as nitrogen and

phosphorous. Despite using such a meticulous

method, current technology still fails to eliminate all

possibilities of MPs leakage. A major cause of this

challenge is the continuous mixture of wastewater

which homogenously enters the reactors. As a result,

the MPs particles that have a density difference do

not get sufficient contact time during secondary and

tertiary treatment processes. Thus, it is estimated that

MPs may persist in treated waters due to the fact that

conventional treatment processes were not initially

designed with a specific focus on removal of MP

pollutants.

It is quite often observed that wastewater plants

are situated close to water bodies. These plants dis-

charge large number of MPs into water bodies,

thereby requiring a major up-gradation in the tech-

nologies incorporated for treatment. It has been

reported that sludge from various WWTPs consists of

about 4.40 9 103–2.40 9 105 particles of MPs per kg

[92]. In addition, the effluents consist of MPs falling

within a range of 0.01 particles L-1 to 2.97 9 102

particles L-1, while influent concentration ranged

from 0.28 particles L-1 to 3.14 9 104 particles L-1 [92].

This puts a significant emphasis on the WWTPs-

generated MPs through sludge or direct discharge

into water bodies [90]. So, to further enhance the

treatment steps in WWTPs, many techniques have

been explored, some of which have been briefly

discussed.

Flocculation

The primary phase in treatment of wastewaters is the

crucial step for maximum removal of MPs [93]. An

essential technique to enhance this phase is through

the technique of flocculation or coagulation method

(FCM). This method allows the usage of an appro-

priate floc/coagulant, which on addition to the

wastewater can interact with the MPs particles.

Lapointe et al. reported that the aggregation of MPs

and flocs was observed due to interactive forces such

as hydrogen bond, van der Waals forces and

electrostatic forces (Fig. 7) [93, 94]. In this method,

flocculation followed by settling illustrated that PE,

as well as polyesters fibers, could be successfully

separated. Iron-based [95] and aluminum-based [96]

flocculants/coagulants have been determined to

successfully aggregate MPs, while the presence of

functional groups [94] (hydroxyl group and carboxyl

group) has also enhanced flocculation of MPs. Other

advanced hybrid techniques such as electrocoagula-

tion electro-flotation (EC/EF) have also been recently

explored as alternatives [97–99]. In this method, sac-

rificial anodes release coagulants and electrolysis

occurs at the cathode, where flotation is responsible

for the removal of micropollutants.

FCM, however, may be dependent on various fac-

tors such as size and shape of MPs, pH, coagulant/

floc dosage and chemical properties and other oper-

ational parameters [93]. In addition to this, the

application of FCM in municipal wastewater matrix

must be studied in depth to fully understand and

utilize this potentially efficient method.

Ultrafiltration

Membrane-based separation techniques such as

ultrafiltration (UF) can also be used to remove MPs.

In this method, an appropriate membrane is able to

selectively remove desired particles by utilizing the

concept of size-based pressure-driven particle cap-

ture [100]. It provides two of the major advantages for

MPs removal method: low-energy consumption and

high MPs removal efficiency. Moreover, this method

can be used for compact plant sizes also. It is often

used as a replacement for FCM, or in combination

with FCM.

In a recent study, two WWTPs (A1 and A2) located

in Bangkok, Thailand, were compared such that A2

was equipped with UF as a final step (Fig. 8) [101].

The conventional A1 WWTP exhibited a MP removal

efficiency of 78.73%. However, the underground A2

WWTP, which was coupled with pilot-scale UF,

showed a MP removal efficiency of 96.97%. A large

section of the separated MPs and fibers were deter-

mined to fall within a range of 0.05–0.5 mm, which

indicates that the high efficiency may be credited to

the small size of the particles. Furthermore, the

Fourier-Transform Infrared Spectroscopy (FTIR)

analysis of most of the separated fibers can indicate

the source and composition of removed MPs.
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Membrane bioreactors

Membrane bioreactor (MBR) is an advanced tech-

nology that involves the use of biological catalysts

coupled to a separation technique, commonly oper-

ated by a membrane [102]. The biological catalysts

may be bacteria or enzymes, and common separation

techniques, such as UF, may also be incorporated in

this method. The presence of a catalysts helps in

biodegrading complex organic matter and conse-

quently decreasing the complexity of the waste

matrix. The lowered solution complexity permits

better MPs removal. As shown in Fig. 9, this process

begins as a stream of the waste matrix, which may be

pre-treated, flows into the bioreactor. Herein,

biodegradation of the organic matter produces a

mixed liquid, which further flows into the membrane

reactor via a cross-flow filtration system. This leads to

the separation of treated water, while the return

sludge flows back into the bioreactor for further

cycles of treatment.

It provides systematic compartmental units which

result in a controlled multi-phase or heterogeneous

reaction system. Besides this, other treatment meth-

ods can also be integrated with this technique,

allowing researchers to uplift the efficiency of

WWTPs. Baresel et al. discovered that employing a

combination of membrane bioreactor and ultrafiltra-

tion with granulated active carbon biofilter can create

favorable conditions for detection of MPs present in

wastewater effluents [103]. In 2017, Talvitie et al.

reported that the secondary treatment of wastewater

using MBR can remove MPs as efficiently as 99.9%

[104]. As shown in Fig. 10, they reported comparative

studies depicting highest efficiency of MBR as com-

pared to other methods such as sand filter, disk filter

and flotation method [104].

Although many recent innovations and develop-

ment have been made for MPs removal from

wastewater, the research in this field is still at its

preliminary stage. Full-scale application in WWTPs

faces major challenges which constitute of unavoid-

able downsides, such as high cost of inputs, mainte-

nance and filter clogging.

Recycling

Limited science and technology hinder speedy

advancements in removal and degradation of MPs,

due to which alternatives such as plastic recycling

need to be explored simultaneously to boost the for-

mation of a circular economy. Subsequently, a cir-

cular economy maximizes economic efficiency,

lowers resource consumption and reduces environ-

mental pollution, thereby fostering sustainability and

responsible resource management [105]. The four

typical strategies of recycling MP waste are primary,

secondary, tertiary, and quaternary recycling, which

are briefly highlighted below.

(I) Primary recycling: It is an in-plant mechan-

ical recycling method that invests scrap

materials directly into prime-grade products

without any pre-treatment. This type of

recycling is a closed-loop technique which

majorly produces high-quality plastics from

Figure 7 Coagulants, such as Al-based and Fe-based salts, successfully show separation of PE-MPs and polyester fibers.
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uncontaminated plastic resources that are

often created by manufacturers [106].

(II) Secondary recycling: It is mechanical recy-

cling which involves production of new

products from mixed plastic wastes [17].

Unlike primary recycling techniques, sec-

ondary recycling is a downgrading technique

which generates low-quality plastic from

contaminated plastic waste [107]. Collection,

sorting, shredding, washing and pelletizing

are just a few of the processes involved in

mechanical recycling (Fig. 11). It is one of the

most commonly used methods of recycling

plastics [108].

(III) Tertiary recycling: It is achieved by recover-

ing plastic wastes into value-added products,

such as oil or hydrocarbons [17]. This type of

recycling is also known as chemical

recycling.

(IV) Quaternary Recycling: This method invokes

energy recovery by high temperature com-

bustion of plastic wastes; though it is a

Figure 8 Comparative study of a conventional WWTP and another WWTP coupled with UF in Bangkok, Thailand [101].
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Figure 9 Two different commercial MBR configurations: (a) side stream MBR and (b) immersed MBR.

Figure 10 Comparative efficiency of MPs removal from wastewater effluents, showing the highest efficiency in MBR method.
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method that faces major challenges such as

emission of greenhouse gases [17].

Following collection, sorting and cleaning of the

plastic wastes, there are typically four standard

routes for recycling plastic (Fig. 12) [109]. Primary

Figure 11 Illustration of some

of the various processes

involved in mechanical

recycling. MaPs

Macroplastics, PVC polyvinyl

chloride, PP polypropylene,

PE polyethylene.

Figure 12 Schematics of the various routes for recycling plastic waste, namely primary, secondary, tertiary and quaternary recycling,

which can replace traditional disposal of such plastic wastes in landfills.
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recycling is the use of plastic leftovers to create goods

with properties similar to the original material. The

term ‘‘closed-loop process’’ is also used to describe

this well-established procedure. In secondary recy-

cling, plastic wastes are recovered via mechanical

means which include methods such as injection

molding and screw extrusion. Plastic waste is trans-

formed into smaller molecules, typically liquids or

gases, through tertiary recycling or chemical recy-

cling. These molecules are then used as the feedstock

for a process that produces chemicals and fuels. Most

commonly pyrolysis (in the presence of catalysts) has

been used to mainly obtain three by-products (gases,

oils and hydrochar). Quaternary recycling, often

known as incineration, involves recovering energy

from waste plastic through burning, significantly

reducing the volume of waste. This method is typi-

cally used when wastes are too contaminated to be

recycled normally. However, it produces waste resi-

dues which are accompanied by generation of toxic

pollutant gases. By adding activated carbon, neu-

tralizing acids, introducing ammonia into the com-

bustion chamber and other methods, hazardous

gases that are often released during combustion can

be minimized. Waste that is poisonous or contagious

can be effectively decomposed since the waste is

reduced to roughly 1% of its initial volume. Conse-

quently, this is the best recycling method for medical

waste.

Some other common recycling techniques are sol-

vent extraction, gasification, pyrolysis, and

hydrothermal processes [110]. The technique of sol-

vent extraction involves dissolving the target poly-

mer in an appropriate polymer-compatible solvent

and thereafter extraction is achieved by precipitation.

Hydrothermal processes involve the depolymeriza-

tion of sub or supercritical fluids which show high

selectivity. Hydrothermal and solvent extraction has

greater application in the case of mixed plastic waste

[110]. Gasification provides a platform for generation

of fuel from MPs; a technique that has been deter-

mined to influence the production efficiency of syn-

gas from a combination of feedstock containing

biomass and plastic wastes [111]. Lastly, pyrolysis is

carried out in the absence of oxygen, at high tem-

perature (400–800 �C), for the depolymerization of

complex polymers to simpler products.

In a recent study, the acid-catalyzed recycle of PS

to valuable products was carried out at 1 bar pressure

of O2 (Fig. 13) [112]. The disintegration of PS is

hypothesized to be caused by the formation of singlet

oxygen which acts as the ROS. Consequently, the

ROS abstract hydrogen from the tertiary C–H bond,

which gives rise to hydroperoxidation. This eventu-

ally causes C–C cleavage via radical processes, thus

generating new value-added products. This simple

process has opened up new perspectives and scope

for photolytic and photocatalytic recycling of MaPs

and MPs.

Despite these wide ranges of available methods,

recycling plastic is still hindered by restrictions like

high processing costs for relatively inexpensive vir-

gin plastic, contaminated plastic resulting in a limited

number of re-cycles and poor recyclability of waste

plastic made from textiles, flexible packaging, etc.

[107, 113, 114]. Furthermore, not all plastics can be

recycled, mixed and tainted. Although degraded

polymers can be utilized as feedstock or in energy

recovery, they are not suitable for recycling. Addi-

tionally, producers require a consistent flow of raw

materials of uniform quality, which is occasionally

challenging with recycled plastic. Consequently, due

to its many advantages and disadvantages, recycling

plastic wastes to reduce MPs outflow into our

ecosystems is still a contentious topic of discussion.

However, recycling plastics is still a primary focus in

waste management because it has significant envi-

ronmental advantages such as preserving natural and

energy resources, cutting down emissions from pol-

lutants, minimizing the need for landfills and even

boosting local economies.

Degradation

Considering the small size range and our limited

ability to detect their presence, the removal of MPs is

a challenging hurdle. For any comprehensive, in-

depth analysis of MPs, advanced separation and

degradation techniques as well as the high cost of

labor and manufacture must be taken into consider-

ation. As indicated by Atwood et al., the first and

main criterion might be satisfied by understanding

the fundamental mechanisms underlying microplas-

tic transport into different ecosystems [115]. This can

be followed by identification of appropriate methods

for removal from desired ecosystems. However,

merely removing MPs is not the ultimate and optimal

solution for effectively terminating the life cycle of

MP. Instead, it is imperative to explore alternative

methodologies that encompass complete degradation
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of MPs, with the goal of generating value-added

products [110]. Through three major routes, namely

thermal, photocatalytic degradation, and biodegra-

dation, targeted MPs can be disintegrated to low

molecular weight compounds [116].

Thermal degradation

The method of thermal degradation, or pyrolysis,

occurs via thermo-oxidative reactions on applying

heat to large complex polymers, consequently pro-

ducing smaller monomers [90]. One such recent

work, carried out by Wang et al., displays excellent

efficiency of adsorption and thermal degradation of

PS-based MPs using Zn-/Mg-modified magnetic

Figure 13 Chemical recycling of PS via a simple and novel photo-acid-catalyzed method using molecular oxygen. Reproduced with

permission from reference [112]. Copyright � 2022 American Chemical Society.

Figure 14 Adsorption followed by thermal treatment for removal of PS-based MPs using Zn-/Mg-modified magnetic biochar (Zn/Mg

MBC) [117].
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biochar (MBC) (Fig. 14) [117]. It was hypothesized

that the biochar adsorbents are capable of simulta-

neously carrying out adsorption and thermal degra-

dation. First, adsorption of MPs is induced by

electrostatic interaction between the positively

charged Mg and Zn particles, along with the metal-O-

MP interaction. Second, the active sites of Zn/Mg

MBC engage in the hydrogenation of PS MPs during

pyrolysis, resulting in the generation of small liquid

products. Simultaneously, the adsorbents are recy-

cled through the thermal treatment [117].

In a more recent work, the application of advanced

oxidation processes for degradation of MPs has been

explored [118]. The decomposition of ultra-high-

molecular-weight PE was accomplished in this study

using a hydrothermal coupled Fenton system, which

achieves 95.9% weight loss in 16 hours and 75.6%

mineralization efficiency in 12 hours (Fig. 15). Their

study revealed that this degradation unfolded via a

two-step process: (a) opening of chain which is a

pivotal step and (b) oxidation which gives rise to

carbonyl formation. Additionally, this method was

reported to be adept in removing a variety of petro-

leum-based polymers and maintains high efficiency

in real-world aquatic environments. An overview of

recent thermal degradation of MPs is summarized in

Table 2.

From the literature study, it has been perceived

that most often thermal degradation of MPs has been

opted for their detection, identification and charac-

terization. Most researchers have tried to explore the

possibilities of catalytic pyrolysis for MPs degrada-

tion. However, high energy requirement poses as a

major drawback. Hence, a more environmentally

friendly, economical, and feasible technique of MPs

degradation is required, which instigated researchers

to explore photocatalysts and biocatalysts.

Photocatalytic degradation

An alternative approach, the photocatalytic degra-

dation, allows breakdown of polymers when irradi-

ated with high-intensity photons such that simpler

monomers are derived. The current photocatalysts

industries provide a wide range of options for car-

rying out this method of degradation of MPs. How-

ever, only a handful of such photocatalysts have been

able to exhibit high efficiency. For instance, a novel

hydroxy-rich ultrathin photocatalyst, BiOCl, facili-

tated degradation of MPs due to enhanced produc-

tion of surface hydroxyl radicals, as shown in Fig. 16a

[120].

An attempt at exploring metal oxide NPs (MONPs)

for photocatalytic degradation of MPs have also been

carried out. Uheida et al. designed ZnO nanorods

adhered onto glass fibers which demonstrated visi-

ble-light-driven degradation of PP spherical MPs

(Fig. 16b) [121]. Their study reported that upon irra-

diation for two weeks, the generation of products,

such as acetone, butanol, acetaldehyde, and

formaldehyde, were additionally observed. These

generated by-products exhibit significant potential

for utilization in various industrial applications.

More recently, due to the multi-fold advantages of

photocatalysts, Cao et al. designed MXene/ZnxCd1-xS

photocatalysts which successfully exhibited

Figure 15 Decomposition of

ultra-high-molecular-weight

polyethylene via hydrothermal

coupled Fenton system.

Reproduced with permission

from reference [118].

Copyright � 2022, American

Chemical Society.
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photocatalytic H2 production and PET degradation,

as shown in Fig. 16c [122]. Therefore, it is evident that

photocatalysts can prove to eliminate MPs from

various systems, while simultaneously bringing forth

additional benefits such as value-added products and

energy generation. An overview of recent photocat-

alytic techniques is laid out in Table 3.

Biodegradation

An emerging green method of degrading MPs is

through the usage of biological catalysts. This process

of biodegradation can be carried out by using bacte-

ria, enzymes, fungi, and even larvae. These biocata-

lysts can simply adsorb MPs as carbon source, as well

Table 2 Thermal degradation of MPs in recent years

Microplastic Material Pyrolysis

Temperature

Degradation Technique Degradation

efficiency

Ref.

PS microspheres (1 lm) Mg-modified magnetic

biochars

5008C Adsorption and thermal

degradation

98.75% [117]

PS microspheres (1 lm) Zn-modified magnetic

biochars

5008C Adsorption and thermal

degradation

99.46% [117]

Ultra-high-molecular-

weight PE

– 1408C Thermal Fenton reaction 95.8% [118]

PE – 5508C Pyrolysis \ 1% residue left [119]

PE FeAlOx 5508C Catalytic pyrolysis 51.6% residue left [119]

Figure 16 Various photocatalytic degradations: (a) catalyst BiOCl

used for photocatalytic degradation of MPs. Reproduced with

permission from reference [120]. Copyright � 2020 Elsevier B.V.

All rights reserved. (b) Visible-light-driven degradation of PP

generating value-added by-products in a continuous water-flow

system. Reproduced with permission from reference [121].

Copyright � 2020 The Author(s). Published by Elsevier B.V.

(c) MXene-based photocatalyst used for visible-light-driven H2

production and degradation of PET MPs. Reproduced with

permission from reference [122]. Copyright � 2021 Elsevier Inc.

All rights reserved.
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as degrade MPs to produce simpler non-toxic

monomers. For instance, Yoshida et al. reported that

novel bacterium Ideonella sakaiensis 201-F6 used PET

as a source of carbon and energy to produce two

benign monomers [133]. However, biodegradation

proves to be a surprising method as polymers pose

an inert and recalcitrant nature in our ecosystems.

Being a relatively newer approach, with limited

knowledge, researchers aim to explore this concept

and develop sustainable and reliable methods for

bioremediation of MPs using fungi, biofilms, bacteria

and bacterial consortiums [134].

Recently, Auta et al. demonstrated that Bacillus

cereus and Bacillus gottheilii were able to break down

MPs. These bacterial strains consumed MPs by using

them as a carbon source [135]. It was observed that

Bacillus cereus enzymatic mechanisms cause the

weight loss of PE, PET, and PS by 1.6, 6.6 and 7.4%,

respectively, while Bacillus gottheilii causes the weight

loss of PET, PP, PS, and PE by 3.0, 3.6, 5.8 and 6.2%,

respectively. Similarly, Chauhan et al. used

Exiguobacterium species for developing biofilms on

the surface of PS, which successfully achieved weight

loss of 8 and 8.8%, respectively [136]. Yuan et al.

reported that fungal strains such as Aspergillus tub-

ingensis, Penicillium simplicissimu, Zalerion maritimum

and Aspergillus flavus are also capable of exhibiting

efficient MP degradation [134].

Besides microbes, microbial enzymes have also

been explored as an alternative, such as lignin per-

oxidases, proteases and lipases for degradation of PE,

PU, and PET, respectively [137–139]. However, the

intrinsic chemical additives in MPs may reduce the

effectiveness of microbial enzymes [140]. Moreover,

the usage of enzymes proves to be time-consuming

and a costly process. Additionally, in order for

microbial enzyme colonies to function well, optimal

conditions must be created, which is a difficult pro-

cess in natural systems. Considering these limita-

tions, microbes are a preferred choice for

biodegradation of MPs as they obviate the need for

laborious time-consuming procedures involved in

the extraction and purification of microbial enzymes.

Furthermore, microbes can be efficiently utilized in

regenerative cycles, thereby enhancing the overall

effectiveness and cost efficiency of biodegradation.

Research has been expanded into insects-mediated

biodegradation techniques as well [141]. A recent

study shows that Zophobas atratus larvae were suc-

cessfully able to degrade PS and LDPE without the

generation of any NPs (Fig. 17) [142]. Conjointly,

enhanced efficiency of biodegradation of MPs may be

achieved by pre-treatment through thermal and

photoreactive methods. Thus, persistent research and

development in the area of MP biodegradation have

the potential to significantly accelerate the mitigation

Table 3 A list of the various photocatalysts used for degrading different types of MPs

Microplastic (in lm) Photocatalyst Degradation efficiency Ref.

PP (100–250 lm) Ag/TiO2 100% degradation [123]

PE-S (200–250 lm), PP-W

(2.6 mm)

BiOCl – [120]

LDPE ZnO-Pt nanocomposite Increased CI (13%) and VI (15%) [124]

LDPE (50, 100 and 200 lm) Polyacrylamide-grafted ZnO 7%, 14.6% and 25% degradation [125]

PS TiO2 nanoparticles 98.40% degradation [126]

HDPE ([ 500 lm) N–TiO2 6.40% degradation [127]

HDPE C, N–TiO2 Mean mass loss of 12.42 ± 0.20% [128]

PE Ag-modified TiO2 nanotubes 18% weight loss [129]

PS nanoplastics Immobilized copper oxide semiconductors 23% concentration loss [130]

PET Nano-flower N-doped TiO2 catalyst (Pt@N-TiO2-

1.5%)

29% weight loss [131]

PET fibers Bi2O3@N-TiO2 heterojunction Degrades nearly 10.23 ± 1.91 wt

%

[132]

PP ZnO nanorods 65% reduced average particle

volume

[121]

CI Carbonyl Index; VI Vinyl Index
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of MPs from all ecosystems. An overview of recent

biodegradation techniques is laid out in Table 4.

Challenges and future perspectives

With the critical emergence of MPs in the environ-

ment, the potential threat of MPs on the ecosystems

must be retaliated with upgraded scientific tech-

niques and better waste management strategies.

Researchers, government and other public and pri-

vate bodies are investing their technological and

financial assets to foster new rational and strategic

designs to effectively eliminate MPs from the envi-

ronment. The scientific community must strive and

yield progresses through advances such as photo-

catalytic degradation and biodegradation, which can

help eradicate MPs from the biosphere. Nevertheless,

degradation of MPs is a difficult obstacle due to their

narrow size range and our limited capacity to detect

them. Properties of MPs such as large surface area

and hydrophobicity further allow them to act as

potential substrates for other contaminants such as

heavy metals and pathogenic microorganisms.

Therefore, MPs impose a significant impact on the

environment. However, it is impossible to completely

ban plastics, and therefore, plastic consumption

should be simultaneously coupled with emphasis on

changes that must be made to reduce the production

and consumption of plastic. Other strategies such as

enhancing the correct disposal and recycle of plastic

wastes and strengthening the legal framework can

also cumulatively aid the elimination of MP mitiga-

tion into various ecosystems.

In recent years, several advancements have been

made to cease MPs flow into the environment with a

probable window for many more such advances.

Therefore, some of the critical recommendations to

foster new research in this domain are as follows:

• The effects of MPs on higher organisms are not

fully explored and understood. A major section of

research may be dedicated in analyzing the

toxicity of the chemical additives which leach

from plastics.

Figure 17 Schematics of

larval-mediated

biodegradation of polystyrene

(PS) and low-density

polyethylene (LDPE) MPs.

Reproduced with permission

from reference [142].

Copyright � 2022 Elsevier

Ltd. All rights reserved.
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• Wastewater treatment remains a major challenge

as most techniques have been successful at the

pilot scale only. More research can be focused on

the full-scale implementation of techniques specif-

ically targeted toward MPs removal in WWTPs.

• Adoption of novel adsorbents for the adsorption

of intermediates products is critical and therefore

could modulate product selectivity and play an

important role in generation of value-added

products.

• So far, there are several approaches such as

filtration, adsorption and biodegradation which

are extremely effective. But new approaches are of

dire need to completely degrade and convert MPs

into non-toxic products. Therefore, emerging

processes such as advanced oxidation processes,

photocatalysis and bioremediation processes may

have a bright future and scope.

Conclusion

Exponential increase in plastic consumption at vari-

ous levels has been a boon and bane to human life. As

compared to the various benefits that plastic brings

forth, the affliction of plastic-derived pollution is

high. Emerging research on the deteriorating effects

of MPs has called upon worldwide attention to

eliminate MPs. This work attempts to collate

information regarding the source, fate and degrada-

tion of MPs. It is evident that the primary and sec-

ondary sources of MPs unintentionally flow into the

biosphere, gradually contaminating soil, water and

the food chain. Subsequently, lower and higher

organisms are affected directly or indirectly from

MPs contamination. However, their impact on higher

levels of life forms needs further investigation. Due to

their persistent nature, it is utmost crucial to imple-

ment effective MPs degradation and prevention

actions and therefore requires focus by the scientific

and social community. Wastewater treatment plants

are one of the major contributors of MPs. It must

adopt advanced and updated methods that specifi-

cally target the elimination of MPs. Scientific

advancements via degradation methods, such as

thermal, photocatalytic and biodegradation, can

contribute toward the eradication of MPs in the bio-

sphere. However, the small size range and limited

technologies to detect MPs act as the major challenges

against the removal and degradation of MPs.

Advanced separation and degradation techniques

and high cost of labor and manufacture must also be

considered as obstacles, which remain due to limited

knowledge. In order to effectively degrade and

remove MPs from our environment before they pose

an unavoidable worldwide hazard to all life forms,

reliable, efficient, cost-effective and green technolo-

gies must be developed. Major reformations must

Table 4 A list of the various biocatalysts used for degrading different types of MPs

Microplastic Biocatalysts Degradation efficiency Ref.

Polyhydroxyalkanoate MP Livestock manure biochar (LMBC) 22–31% [143]

Polyethylene—LDPE Streptomyces sp. 46.16% [144]

Sludge-based MPs Thermus sp.; Bacillus sp.; Geobacillus 43.7% [145]

PE Aspergillus flavus 3.9025 ± 1.18% (mass loss) [146]

PS Zophobas atratus 43.3 ± 1.5 mg plastics/100 larvae [142]

LDPE 52.9 ± 3.1 mg plastics/100 larvae

PP Bacillus paramycoides 78.99 ± 0.005% [147]

PE 67.69 ± 0.005%

PVC Pseudomonas sp. 40.53% [148]

Klebsiella sp. 23.06%

Staphylococcus 10.92%

E. coli 5.32%

PS Larvae of Tenebrio molitor 54.2% [149]

PVC Larvae of Galleria mellonella 34.4%

PVC Achromobacter denitrificans Weight loss of 12.3% [150]

LDPE Achromobacter denitrificans Weight loss of 6.5% [150]
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also be adopted against plastic production and con-

sumptions, via pathways such as education and

awareness, plastics disposal management and recy-

cling. Adopting novel and innovative approaches

and policies would help develop clean and sustain-

able society, by diminishing accumulated plastic

waste from the environment.
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