Skip to main content
Log in

A review of clinoptilolite, its photocatalytic, chemical activity, structure and properties: in time of artificial intelligence

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Clinoptilolite belongs to the heulandite group and is one of the most abundant zeolites, possessing significant properties such as high porosity and absorbency. In this compound, the Si/Al ratio is larger than in other zeolites, which makes it stable under high temperatures and acidic conditions. Consequently, it has been used as an efficient and stable photocatalytic material in recent years. Clinoptilolite can be used individually as a self-photocatalyst, as well as with modifications such as increasing its hydrophobicity led to enhance its photocatalytic efficiency. Furthermore, clinoptilolite is applied as a support for photoactive materials that increase the photoactivity of transition metals. Due to its low cost and availability, this material is used as a high-performance natural photocatalytic material. In this article, we review and investigate the geological settings, geochemistry of clinoptilolite species, crystal structure and photocatalytic properties of natural and modified clinoptilolite. We also explore the benefits of using machine learning techniques, such as neural networks, which represent a paradigm shift in the way advancements are made in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Data and materials availability

Not applicable.

References

  1. Mohammadzadeh Kakhki R, Tayebee R, Ahsani F (2017) New and highly efficient Ag doped ZnO visible nano photocatalyst for removing of methylene blue. J Mater Sci Mater Electron 28:5941–5952. https://doi.org/10.1007/s10854-017-6593-7

    Article  CAS  Google Scholar 

  2. Mohammadzadeh Kakhki R, Karimian A, Hasan-nejad H, Ahsani F (2019) Zinc oxide–nanoclinoptilolite as a superior catalyst for visible photo-oxidation of dyes and green synthesis of pyrazole derivatives. J Inorg Organomet Polym Mater 29:1358–1367

    Article  CAS  Google Scholar 

  3. Mohammadzadeh Kakhki R, Tayebee R, Hedayat S (2018) Phthalhydrazide nanoparticles as new highly reusable organic photocatalyst in the photodegradation of organic and inorganic contaminants. Appl Organomet Chem 32:e4033

    Article  Google Scholar 

  4. Mohammadzadeh Kakhki R, Khorrampoor A, Rabbani M, Ahsani F (2017) Visible light photocatalytic degradation of textile waste water by Co doped NiFe2O4 nanocomposite. J Mater Sci Mater Electron 28:4095–4101

    Article  CAS  Google Scholar 

  5. Mohammadzadeh Kakhki R, Mohammadpoor M, Faridi R, Bahadori M (2020) The development of an artificial neural network – genetic algorithm model (ANN-GA) for the adsorption and photocatalysis of methylene blue on a novel sulfur–nitrogen co-doped Fe2O3 nanostructure surface. RSC Adv 10:5951–5960

    Article  CAS  Google Scholar 

  6. Mohammadzadeh Kakhki R, Hedayat S, Mohammadzadeh K (2019) Novel, green and low cost synthesis of Ag nanoparticles with superior adsorption and solar based photocatalytic activity. J Mater Sci Mater Electron 30:8788–8795

    Article  CAS  Google Scholar 

  7. Mohammadzadeh Kakhki R, Ahsani F, Mir N (2016) Enhanced photocatalytic activity of CuO–SiO2 nanocomposite based on a new Cu nanocomplex. J Mater Sci Mater Electron 27:11509–11517. https://doi.org/10.1007/s10854-016-5175-x

    Article  CAS  Google Scholar 

  8. Tayebee R, Mohammadzadeh Kakhki R, Audebert P, Amini MM, Salehi M (2018) A robust UV–visible light-driven SBA-15-PS/phthalhydrazide nanohybrid material with enhanced photocatalytic activity in the photodegradation of methyl orange. Appl Organomet Chem 32:e4391

    Article  Google Scholar 

  9. Mohammadzadeh Kakhki R, Ahsani F (2018) New and effective ZnO and Zn3(VO4)2 visible nano photocatalysts with enhanced photocatalytic performance. J Mater Sci Mater Electron 29:3767–3774

    Article  CAS  Google Scholar 

  10. Mohammadzadeh Kakhki R, Ahsani F (2020) Development of a novel and high performance visible-light-induced Cd3OSO4 nanophotocatalyst for degradation of diazinon. Appl Organomet Chem 34:e5770

    Article  CAS  Google Scholar 

  11. Yaghoobi Rahni S, Mohammadzadeh Kakhki R (2020) Facile and green synthesis of Cu3V2O8 nanostructures via Moringa peregrina natural extract as a high performance photo catalyst. Appl Organomet Chem 34:e5392

    Article  CAS  Google Scholar 

  12. Gholizadeh Fard S, Haghighi M, Shabani M (2019) Facile one-pot ultrasound-assisted solvothermal fabrication of ball-flowerlike nanostructured (BiOBr)x(Bi7O9I3)1–x solid-solution for high active photodegradation of antibiotic levofloxacin under sun-light. Appl Catal B Environ 248:320–331

    Article  Google Scholar 

  13. Yuan S, Liu X, Gao P, Han Y (2020) A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud. J Hazard Mater 394:122579. https://doi.org/10.1016/j.jhazmat.2020.122579

    Article  CAS  Google Scholar 

  14. Farjana SH, Huda N, Mahmud MAP, Saidur R (2019) A review on the impact of mining and mineral processing industries through life cycle assessment. J Clean Prod 231:1200–1217. https://doi.org/10.1016/j.jclepro.2019.05.240

    Article  CAS  Google Scholar 

  15. Cao D, Malakooti S, Kulkarni VN (2021) Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite. Mech Time-Depend Mater 25:353–363

    Article  CAS  Google Scholar 

  16. Cao D, Malakooti S, Kulkarni VN, Ren Y, Liu Y, Nie X, Qian D, Griffith TD, Lu H (2022) The effect of resin uptake on the flexural properties of compression molded sandwich composites. Wind Energy 25:71–93

    Article  Google Scholar 

  17. Zhu P, Chen Y, Duan M, Liu M, Zou P (2018) Structure and properties of Ag3PO4/diatomite photocatalysts for the degradation of organic dyes under visible light irradiation. Powder Technol 336:230–239. https://doi.org/10.1016/j.powtec.2018.06.011

    Article  CAS  Google Scholar 

  18. Brites FF, Santana VS, Fernandes-Machado NRC (2011) Effect of support on the photocatalytic degradation of textile effluents using Nb2O5 and ZnO: photocatalytic degradation of textile dye. Top Catal 54:264–269. https://doi.org/10.1007/s11244-011-9724-z

    Article  CAS  Google Scholar 

  19. Deng Y, Tang L, Feng C, Zeng G, Chen Z, Wang J, Feng H, Peng B, Liu Y, Zhou Y (2018) Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide-based composites with boosted photocatalytic activity under full-spectrum light. Appl Catal B Environ 235:225–237. https://doi.org/10.1016/j.apcatb.2018.04.042

    Article  CAS  Google Scholar 

  20. Farrokhi-Rad M, Mohammadalipour M, Shahrabi T (2018) Removal of methylene blue from aqueous solution by electrophoretically deposited titania-halloysite nanotubes coatings. J Am Ceram Soc 101:4942–4955. https://doi.org/10.1111/jace.15623

    Article  CAS  Google Scholar 

  21. Sohrabnezhad S, Pourahmad A, Salavatiyan T (2016) CuO-MMT nanocomposite: effective photocatalyst for the discoloration of methylene blue in the absence of H2O2. Appl Phys A Mater Sci Process 122:111. https://doi.org/10.1007/s00339-015-9534-4

    Article  Google Scholar 

  22. Laurino C, Palmieri B (2015) Zeolite: “the Magic Stone”; main nutritional, environmental, experimental and clinical fields of application. Nutr Hosp 32:573–581. https://doi.org/10.3305/nh.2015.32.2.9486

    Article  CAS  Google Scholar 

  23. Ivanova II, Knyazeva EE (2013) Micro-mesoporous materials obtained by zeolite recrystallization: Synthesis, characterization and catalytic applications. Chem Soc Rev 42:3671–3688. https://doi.org/10.1039/C2CS35341E

    Article  CAS  Google Scholar 

  24. Ambrozova P, Kynicky J, Urubek T, Nguyen V (2017) Synthesis and modification of clinoptilolite. Molecules 22(7):1107–1116. https://doi.org/10.3390/molecules22071107

    Article  CAS  Google Scholar 

  25. Cataldo E, Salvi L, Paoli F, Fucile M, Masciandaro G, Manzi D, Masini CM, Mattii GB (2021) Application of zeolites in agriculture and other potential uses: a review. Agron 11(8):1547–1567. https://doi.org/10.3390/agronomy11081547

    Article  CAS  Google Scholar 

  26. Montalvo S, Huiliñir C, Borja R, Sánchez E, Herrmann C (2020) Application of zeolites for biological treatment processes of solid wastes and wastewaters–a review. Bioresour Technol 301:122808–122829. https://doi.org/10.1016/j.biortech.2020.122808

    Article  CAS  Google Scholar 

  27. Bogdanov B, Georgiev D, Angelova K, Yaneva K (2009) Natural zeolites: clinoptilolite. Review, Natural & mathematical science. In: Proceedings of the international science conference economics and society development on the base of knowledge, Stara Zagora, vol 4, pp 6–11

  28. Mohammadzadeh Kakhki R, Hedayat S, Ahsani F (2018) High performance removal of anionic and cationic dye pollutants with Co3O4 modified nanoclinoptilolite: kinetics and adsorption equilibrium studies. J Inorg Organomet Polym Mater 28:2264–2274

    Article  CAS  Google Scholar 

  29. Mohammadzadeh R, Bina M (2020) Dispersive micro-solid phase extraction based on Co3O4 modified nanoclinoptilolite for fast determination of malachite green in the environmental water samples. J Inorg Organomet Polym Mater 30:2475–2479

    Article  Google Scholar 

  30. Mohammadzadeh Kakhki R, Tayebee R, Mohammadpour M, Ahsani F (2018) Fast and highly efficient removal of anionic organic dyes with a new Cu modified nanoclinoptilolite. J Incl Phenom Macrocycl Chem 91:133–139

    Article  CAS  Google Scholar 

  31. Alvarez-Aguinaga EA, Elizalde-Gonzalez MP, Sabinas-Hernandez SA (2020) Unpredicted photocatalytic activity of clinoptilolite–mordenite natural zeolite. RSC Adv 10:39251–39261

    Article  CAS  Google Scholar 

  32. Gottardi G (1989) The genesis of zeolites. Eur J Mineral 1:479–487. https://doi.org/10.1127/ejm/1/3/0479

    Article  CAS  Google Scholar 

  33. Zirjanizadeh S, Karimpour MH, Ebrahimi Nasrabadi Kh (2013) Geochemistry and petrology of the volcanic rocks in North West Gonabad. In: Proceedings of the 7th symposium of Iranian society of geology, pp 639–644

  34. Ontalván-Burbano N, Carrión-Mero P, Espinoza-Santos N (2021) Cation exchange of natural zeolites: worldwide research. Sustainability 13:7751

    Article  Google Scholar 

  35. Pabalan RT, Bertetti FP (2001) Cation-exchange properties of natural zeolites. Rev Mineral Geochem 45(1):453–518

    Article  CAS  Google Scholar 

  36. Yang P, Stolz J, Ambruster T, Gunter ME (1997) Na, K, Rb, and Cs exchange in heulandite single crystals: diffusion kinetics. Am Miner 82:517–525

    Article  CAS  Google Scholar 

  37. Rahmani AR, Samadi MT, Ehsani HR (2009) Investigation of clinoptilolite natural zeolite regeneration by air striping followed by ion exchange for removal of ammonium from aqueous solutions. Iran J Environ Health Sci Eng 6(3):167–172

    CAS  Google Scholar 

  38. Kilislioglu A (2012) Ion exchange technologies. InTech

  39. Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Engin J 156(1):11–24

    Article  CAS  Google Scholar 

  40. Smičiklas I, Coha I, Jović M, Nodilo M, Šljivić-Ivanović M, Smiljanić S, Grahek Z (2021) Efficient separation of strontium radionuclides from high-salinity wastewater by zeolite 4A synthesized from Bayer process liquids. Sci Rep 11:1738

    Article  Google Scholar 

  41. Ham K, Kim BS, Choi K-Y (2018) Enhanced ammonium removal efficiency by ion exchange process of synthetic zeolite after Na+ and heat pretreatment. Water Sci Technol 78:1417–1425

    Article  CAS  Google Scholar 

  42. Ghiara MR, Petti C, Franco E, Lonis R, Luxoro S, Gnazzo L (1999) Occurrence of clinoptilolite and modernite in tertiary calc-alkaline pyroclastites from Sardinia (Italy). Clays Clay Miner 47:319–328. https://doi.org/10.1346/ccmn.1999.0470305

    Article  CAS  Google Scholar 

  43. Liu R, Ji Z, Wang J, Zhang J (2018) Solvothermal fabrication of TiO2/sepiolite composite gel with exposed 001 and 101 facets and its enhanced photocatalytic activity. Appl Surf Sci 441:29–39. https://doi.org/10.1016/j.apsusc.2018.01.218

    Article  CAS  Google Scholar 

  44. Tschegg C, Ntaflos Th, Kiraly F, Sz H (2010) High temperature corrosion of olivine phenocrysts in Pliocene basalts from Banat, Romania. Aust J Earth Sci 103:101–110. https://doi.org/10.1007/s00531-008-0335-8

    Article  Google Scholar 

  45. Bish DL, Boak JM (2001) Clinoptilolite-heulandite nomenclature. In: Bish DL, Ming, DW (ed) Reviews in Mineralogy & Geochemistry, Natural Zeolites, vol 45, p 207–216

  46. Yang P, Armbruster T (1996) Na, K, Rb, and Cs exchange in heulandite single crystals: X-ray structure refinements at 100 K. J Solid State Chem 123:140–149. https://doi.org/10.1006/jssc.1996.0267

    Article  CAS  Google Scholar 

  47. Warr LN (2021) IMA–CNMNC approved mineral symbols. Mineral Mag 85:291–320. https://doi.org/10.1180/mgm.2021.34

    Article  CAS  Google Scholar 

  48. McCusker L, Liebau F, Engelhardt G (2001) Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts (IUPAC Recommendations 2001). Pure Appl Chem 73:381–394. https://doi.org/10.1351/pac200173030381

    Article  CAS  Google Scholar 

  49. Benning LG, Wilkin RT, Barnes HL (2000) Solubility and stability of zeolites in aqueous solution: II. Calcic clinoptilolite and mordenite. Am Mineral 85:495–508. https://doi.org/10.2138/am-2000-0412

    Article  CAS  Google Scholar 

  50. Roth WJ, Nachtigall P, Morris RE, Cejka J (2014) Two-dimensional zeolites: current status and perspectives. Chem Rev 114:4807–4837. https://doi.org/10.1021/cr400570t

    Article  CAS  Google Scholar 

  51. Moshoeshoe M (2017) A review of the chemistry, structure, properties and applications of zeolites. Am J Mater Sci 7:196–221. https://doi.org/10.11648/j.ajms.20170706.11

    Article  Google Scholar 

  52. Kestner O (1921) Uber die wasserabgabe der klinoptiloliths und einiger andere mineralien. Z Biol 73:7–9

    CAS  Google Scholar 

  53. Hume EM, Smith HH (1923) The preparation of clinoptilolite and mordenite. Biochem J 17:364–372. https://doi.org/10.1042/bj0170364

    Article  CAS  Google Scholar 

  54. Liu X, Liu Y, Lu S, Guo W, Xi B (2018) Performance and mechanism into TiO2/zeolite composites for sulfadiazine adsorption and photodegradation. Chem Eng J 350:131–147

    Article  CAS  Google Scholar 

  55. Jafari S, Nezamzadeh-Ejhieh A (2017) Supporting of coupled silver halides onto clinoptilolite nanoparticles as simple method for increasing their photocatalytic activity in heterogeneous photodegradation of mixture of 4-methoxy aniline and 4-chloro-3-nitro aniline. J Colloid Interface Sci 490:478–487

    Article  CAS  Google Scholar 

  56. Liu J, Lin H, He Y, Dong Y, Rose E, Menzembere GY (2020) Novel CoS2/MoS2@ Zeolite with excellent adsorption and photocatalytic performance for tetracycline removal in simulated wastewater. J Clean Prod 260:121047. https://doi.org/10.1016/j.jclepro.2020.121047

    Article  CAS  Google Scholar 

  57. Jiao J, Sun J, Ullah R, Bai S, Zhai C (2020) One-step synthesis of hydrophobic clinoptilolite modified by silanization for the degradation of crystal violet dye in aqueous solution. RSC Adv 10:22809. https://doi.org/10.1039/d0ra03151h

    Article  CAS  Google Scholar 

  58. Sanni SO, Modise SJ, Viljoen EL, Ofomaja A (2020) Enhanced degradation of dye mixtures: physicochemical and electrochemical properties of titania dispersed on clinoptilolite, synergistic influence. SN Appl Sci 2:1668

    Article  CAS  Google Scholar 

  59. Shen Y, Zhou P, Zhao S, Li A, Chen Y, Bai J, Han C, Wei D, Ao Y (2020) Synthesis of high-efficient TiO2/clinoptilolite photocatalyst for complete degradation of xanthate. Miner Eng 159:106640

    Article  CAS  Google Scholar 

  60. Bel’chinskaya LI, Strel’nikova OY, Novikova LA, Ressner F, Voishcheva OV (2008) Enhancement of the adsorption selectivity of nanoporous clinoptilolite by hydrophobization with organosiloxanes. Prot Met 44:390–393

    Article  CAS  Google Scholar 

  61. Wang HY, Shi HS, Jiang JQ (2011) The effect of metal cations on phenol adsorption by hexadecyl-trimethyl-ammonium bromide (hdtma) modified clinoptilolite (Ct.). Sep Purif Technol 80:658–662

    Article  CAS  Google Scholar 

  62. Zhang L, Chen K, Chen B, White JL, Resasco DE (2015) Factors that determine zeolite stability in hot liquid water. J Am Chem Soc 137(36):11810–11819. https://doi.org/10.1021/jacs.5b07398

    Article  CAS  Google Scholar 

  63. Kawai T, Tsutsumi K (1995) Adsorption characteristics of surfactants and phenol on modified zeolites from their aqueous solutions. Colloid Polym Sci 273:787–792

    Article  CAS  Google Scholar 

  64. Park Y, Lee SH, Kang SO, Choi WY (2010) Organic dye-sensitized TiO2 for the redox conversion of water pollutants under visible light. Chem Commun 46:2477–2479

    Article  CAS  Google Scholar 

  65. Liu Z, Zhang X, Nishimoto S, Murakami T, Fujishima A (2008) Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ Sci Technol 42:8547–8551

    Article  CAS  Google Scholar 

  66. Guesh K, Márquez-Álvarez C, Chebude Y, Díaz I (2016) Enhanced photocatalytic activity of supported TiO2 by selective surface modification of zeolite Y. Appl Surf Sci 378:473–478

    Article  CAS  Google Scholar 

  67. Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015) n overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146. https://doi.org/10.1016/j.watres.2015.04.038

    Article  CAS  Google Scholar 

  68. Sanni S, Viljoen E, Ofomaja A (2019) Accelerated electron transport and improved photocatalytic activity of Ag/AgBr under visible light irradiation based on conductive carbon derived biomass. Catal Lett 149:3027–3040

    Article  CAS  Google Scholar 

  69. Takeda N, Torimoto T, Sampath S, Kuwabata S, Yoneyama H (1995) Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. J Phys Chem B 99:9986–9991

    Article  CAS  Google Scholar 

  70. Takeda N, Iwata N, Torimoto T, Yoneyama H (1998) Influence of carbon black as an adsorbent used in TiO2 photocatalyst films on photodegradation behaviors of propyzamide. J Catal 177:240–246

    Article  CAS  Google Scholar 

  71. Fukahori S, Ichiura H, Kitaoka T, Tanaka H (2003) Photocatalytic decomposition of bisphenol a in water using composite TiO2–zeolite sheets prepared by a papermaking technique. Environ Sci Technol 37:1048–1051

    Article  CAS  Google Scholar 

  72. Mehrabadi Z, Faghihian H (2018) Elimination of highly consumed herbicide; 2, 4-dichlorophenoxyacetic acid from aqueous solution by TiO2 impregnated clinoptilolite, study of degradation pathway. Spectrochim Acta, Part A 204:248–259

    Article  CAS  Google Scholar 

  73. Khatamian M, Hashemian S, Sabaee S (2010) Preparation and photo-catalytic activity of nano-TiO2–ZSM-5 composite. Mater Sci Semicond 13(3):156–161. https://doi.org/10.1016/j.mssp.2010.10.002

    Article  CAS  Google Scholar 

  74. Ullah R, Liu C, Panezai H, Gul A, Sun J, Wu X (2020) Controlled crystal phase and particle size of loaded-TiO2 using clinoptilolite as support via hydrothermal method for degradation of crystal violet dye in aqueous solution. Arab J Chem 13(2):4092–4101. https://doi.org/10.1016/j.arabjc.2019.06.011

    Article  CAS  Google Scholar 

  75. Mamaghani AH, Haghighat F, Lee CS (2019) Hydrothermal/solvothermal synthesis and treatment of TIO2 for photocatalytic degradation of air pollutants: preparation, characterization, properties, and performance. Chemosphere 219:804–825. https://doi.org/10.1016/j.chemosphere.2018.12.029

    Article  CAS  Google Scholar 

  76. Keerthana BGT, Solaiyammal T, Muniyappan S, Murugakoothan P (2018) Hydrothermal synthesis and characterization of TiO2 nanostructures prepared using different solvents. Mater Lett 220:20–23. https://doi.org/10.1016/j.matlet.2018.02.119

    Article  CAS  Google Scholar 

  77. Gul A, Ullah R, Sun J, Munir T, Bai S (2021) The fabrication of TiO2-supported clinoptilolite via F- contained hydrothermal etching and a resultant highly energetic 001 facet for the enhancement of its photocatalytic activity. RSC Adv 11(29):17849–17859. https://doi.org/10.1039/d1ra02269e

    Article  CAS  Google Scholar 

  78. Soleimani M, Amini N (2021) Removal of Cr (VI) from aqueous solutions using clinoptilolite modified by TiO2 and polyoxypropylene surfactant. Remediation 31(3):61–69

    Article  Google Scholar 

  79. Davari N, Farhadian M, Solaimany Nazar AR (2021) Synthesis and characterization of Fe2O3 doped ZnO supported on clinoptilolite for photocatalytic degradation of metronidazole. Environ Technol 42(11):1734–1746

    Article  CAS  Google Scholar 

  80. Zhang X, Xie H, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem 135(1):18–21. https://doi.org/10.1021/ja308249k

    Article  CAS  Google Scholar 

  81. Ma S, Zhan S, Jia Y, Shi Q, Zhou Q (2016) Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl Catal B: Environ 186:77–87. https://doi.org/10.1016/j.apcatb.2015.12.051

    Article  CAS  Google Scholar 

  82. Ingram DB, Christopher P, Bauer JL, Linic S (2011) Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal 1(10):1441–1447

    Article  CAS  Google Scholar 

  83. Jodeyri M, Haghighi M, Shabani M (2019) Enhanced-photoreduction deposition of Ag over sono-dispersed C3N4-Clinoptilolite used as nanophotocatalyst for efficient photocatalytic degradation of tetracycline antibiotic under simulated solar-light. J Mater Sci Mater Electron 30:13877–13894

    Article  CAS  Google Scholar 

  84. Baum ZJ, Yu X, Ayala PY, Zhao Y, Watkins SP, Zhou Q (2021) Artificial intelligence in chemistry: current trends and future directions. J Chem Inf Model 61:3197–3212. https://doi.org/10.1021/acs.jcim.1c00353

    Article  CAS  Google Scholar 

  85. Jaffari ZH, Abbas A, Lam SM, Park S, Chon K, Kim ES, Cho KH (2023) Machine learning approaches to predict the photocatalytic performance of bismuth ferrite-based materials in the removal of malachite green. J Hazard Mater 442:130031. https://doi.org/10.1016/j.jhazmat.2022.130031

    Article  CAS  Google Scholar 

  86. Mai H, Le TC, Chen D, Winkler DA, Caruso RA (2022) Machine learning for electrocatalyst and photocatalyst design and discovery. Chem Rev 122(16):13478–13515. https://doi.org/10.1021/acs.chemrev.1c01854

    Article  CAS  Google Scholar 

  87. Mohammadpoor M (2021) A deep learning algorithm to detect coronavirus (COVID-19) disease using CT images. PeerJ Comput Sci 7:e345. https://doi.org/10.7717/peerj-cs.345

    Article  Google Scholar 

  88. Kabuba J (2014) Application of neural network on the loading of copper onto clinoptilolite. Int J Chem Mol Eng 8(8):832–835

    Google Scholar 

  89. Gasteiger J (2020) Chemistry in times of artificial intelligence. ChemPhysChem 21(20):2233–2242. https://doi.org/10.1002/cphc.202000668

    Article  CAS  Google Scholar 

  90. Mohammadzadeh kakhki R, Mohammadpoor M, Faridi R, Bahadori M (2020) The development of an artificial neural network–genetic algorithm model (ANN-GA) for the adsorption and photocatalysis of methylene blue on a novel sulfur–nitrogen co-doped Fe2O3 nanostructure surface. RSC Adv 10:5951–5960. https://doi.org/10.1039/D0RA00881F

    Article  CAS  Google Scholar 

  91. Kabuba J, Mulaba-Bafubiandi A, Battle K (2014) Neural network technique for modeling of Cu(II) removal from aqueous solution by Clinoptilolite. Arab J Sci Eng 39(10):6793–6803. https://doi.org/10.1007/s13369-014-1232-y

    Article  CAS  Google Scholar 

  92. Saucedo-Delgado BG, De Haro-Del Rio DA, González-Rodríguez LM, Reynel-Ávila HE, Mendoza-Castillo DI, Bonilla-Petriciolet A, de la Rosa JR (2017) Fluoride adsorption from aqueous solution using a protonated clinoptilolite and its modeling with artificial neural network-based equations. J Fluorine Chem 204:98–106. https://doi.org/10.1016/j.jfluchem.2017.06.003

    Article  CAS  Google Scholar 

  93. Norouzi M, Karimian A, Dehghani H, Rezvan Leylan SA (2021) Photocatalytic degradation of 2, 4, 6-trinitrotoluene (TNT) in the presence of ZnS, NiS and ZnS/NiS supported clinoptilolite under UV irradiation: experimental and neural network modelling. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1890152

    Article  Google Scholar 

Download references

Funding

This declaration is not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The main text of article and discussions about photocatalytic application of clinoptilolite was written by R. Mohammadzadeh Kakhki. Geological settings, geochemistry of clinoptilolite species and crystal structure of clinoptilolite were added by S. Zirjanizadeh. The application, advantages and proposal of modeling using intelligent methods such as neural networks were added by M. Mohammadpoor.

Corresponding author

Correspondence to Roya Mohammadzadeh Kakhki.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh Kakhki, R., Zirjanizadeh, S. & Mohammadpoor, M. A review of clinoptilolite, its photocatalytic, chemical activity, structure and properties: in time of artificial intelligence. J Mater Sci 58, 10555–10575 (2023). https://doi.org/10.1007/s10853-023-08643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08643-9

Navigation